106 research outputs found

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF

    Energy analysis and optimisation techniques for automatically synthesised coprocessors

    Get PDF
    The primary outcome of this research project is the development of a methodology enabling fast automated early-stage power and energy analysis of configurable processors for system-on-chip platforms. Such capability is essential to the process of selecting energy efficient processors during design-space exploration, when potential savings are highest. This has been achieved by developing dynamic and static energy consumption models for the constituent blocks within the processors. Several optimisations have been identified, specifically targeting the most significant blocks in terms of energy consumption. Instruction encoding mechanism reduces both the energy and area requirements of the instruction cache; modifications to the multiplier unit reduce energy consumption during inactive cycles. Both techniques are demonstrated to offer substantial energy savings. The aforementioned techniques have undergone detailed evaluation and, based on the positive outcomes obtained, have been incorporated into Cascade, a system-on-chip coprocessor synthesis tool developed by Critical Blue, to provide automated analysis and optimisation of processor energy requirements. This thesis details the process of identifying and examining each method, along with the results obtained. Finally, a case study demonstrates the benefits of the developed functionality, from the perspective of someone using Cascade to automate the creation of an energy-efficient configurable processor for system-on-chip platforms

    Balancing Design Options with Sherpa

    Get PDF
    Application specific processors offer the potential of rapidly designed logic specifically constructed to meet the performance and area demands of the task at hand. Recently, there have been several major projects that attempt to automate the process of transforming a predetermined processor configuration into a low level description for fabrication. These projects either leave the specification of the processor to the designer, which can be a significant engineering burden, or handle it in a fully automated fashion, which completely removes the designer from the loop. In this paper we introduce a technique for guiding the design and optimization of application specific processors. The goal of the Sherpa design framework is to automate certain design tasks and provide early feedback to help the designer navigate their way through the architecture design space. Our approach is to decompose the overall problem of choosing an optimal architecture into a set of sub-problems that are, to the first order, independent. For each subproblem, we create a model that relates performance to area. From this, we build a constraint system that can be solved using integer-linear programming techniques, and arrive at an ideal parameter selection for all architectural components. Our approach only takes a few minutes to explore the design space allowing the designer or compiler to see the potential benefits of optimizations rapidly. We show that the expected performance using our model correlates strongly to detailed pipeline simulations, and present results showing design tradeoffs for several different benchmarks

    RISPP: A Run-time Adaptive Reconfigurable Embedded Processor

    Get PDF
    This Ph.D. thesis describes a new approach for adaptive processors using a reconfigurable fabric (embedded FPGA) to implement application-specific accelerators. A novel modular Special Instruction composition is presented along with a run-time system that exploits the provided adaptivity. The approach was simulated and prototyped using and FPGA. Comparisons with state-of-the-art appl.-specific and reconf. processors demonstrate significant improvements according the performance and efficiency

    Improving Energy Efficiency of Application-Specific Instruction-Set Processors

    Get PDF
    Present-day consumer mobile devices seem to challenge the concept of embedded computing by bringing the equivalent of supercomputing power from two decades ago into hand-held devices. This challenge, however, is well met by pushing the boundaries of embedded computing further into areas previously monopolised by Application-Specific Integrated Circuits (ASICs). Furthermore, in areas traditionally associated with embedded computing, an increase in the complexity of algorithms and applications requires a continuous rise in availability of computing power and energy efficiency in order to fit within the same, or smaller, power budget. It is, ultimately, the amount of energy the application execution consumes that dictates the usefulness of a programmable embedded system, in comparison with implementation of an ASIC.This Thesis aimed to explore the energy efficiency overheads of Application-Specific InstructionSet Processors (ASIPs), a class of embedded processors aiming to compete with ASICs. While an ASIC can be designed to provide precise performance and energy efficiency required by a specific application without unnecessary overheads, the cost of design and verification, as well as the inability to upgrade or modify, favour more flexible programmable solutions. The ASIP designs can match the computing performance of the ASIC for specific applications. What is left, therefore, is achieving energy efficiency of a similar order of magnitude.In the past, one area of ASIP design that has been identified as a major consumer of energy is storage of temporal values produced during computation – the Register File (RF), with the associated interconnection network to transport those values between registers and computational Function Units (FUs). In this Thesis, the energy efficiency of RF and interconnection network is studied using the Transport Triggered Architectures (TTAs) template. Specifically, compiler optimisations aiming at reducing the traffic of temporal values between RF and FUs are presented in this Thesis. Bypassing of the temporal value, from the output of the FU which produces it directly in the input ports of the FUs that require it to continue with the computation, saves multiple RF reads. In addition, if all the uses of such a temporal value can be bypassed, the RF write can be eliminated as well. Such optimisations result in a simplification of the RF, via a reduction in the actual number of registers present or a reduction in the number of read and write ports in the RF and improved energy efficiency. In cases where the limited number of the simultaneous RF reads or writes cause a performance bottleneck, such optimisations result in performance improvements leading to faster execution times, therefore, allowing for execution at lower clock frequencies resulting in additional energy savings.Another area of the ASIP design consuming a significant amount of energy is the instruction memory subsystem, which is the artefact required for the programmability of the embedded processor. As this subsystem is not present in ASIC, the energy consumed for storing an application program and reading it from the instruction memories to control processor execution is an overhead that needs to be minimised. In this Thesis, one particular tool to improve the energy efficiency of the instruction memory subsystem – instruction buffer – is examined. While not trivially obvious, the presence of buffers for storing loop bodies, or parts of them, results in a reduced number of reads from the instruction memories. As a result, memories can be put to lower power state leading to lower overall energy consumption, pending energy-efficient buffer implementation. Specifically, an energy-efficient implementation of the instruction buffer is presented in this Thesis, together with analysis tools to identify candidate loops and assess their suitability for storing in the instruction buffer.The studies presented in this Thesis show that the energy overheads associated with the use of embedded processors, in comparison to ad-hoc ASIC solutions, are manageable when carefully considered during the design of an embedded system for a particular application, or application domain. Finally, the methods presented in this Thesis do not restrict the reprogrammability of the embedded system

    VLSI smart sensor-processor for fingerprint comparison

    Get PDF

    Reconfigurable Instruction Cell Architecture Reconfiguration and Interconnects

    Get PDF

    Cost-Efficient Soft-Error Resiliency for ASIP-based Embedded Systems

    Full text link
    Recent decades have witnessed the rapid growth of embedded systems. At present, embedded systems are widely applied in a broad range of critical applications including automotive electronics, telecommunication, healthcare, industrial electronics, consumer electronics military and aerospace. Human society will continue to be greatly transformed by the pervasive deployment of embedded systems. Consequently, substantial amount of efforts from both industry and academic communities have contributed to the research and development of embedded systems. Application-specific instruction-set processor (ASIP) is one of the key advances in embedded processor technology, and a crucial component in some embedded systems. Soft errors have been directly observed since the 1970s. As devices scale, the exponential increase in the integration of computing systems occurs, which leads to correspondingly decrease in the reliability of computing systems. Today, major research forums state that soft errors are one of the major design technology challenges at and beyond the 22 nm technology node. Therefore, a large number of soft-error solutions, including error detection and recovery, have been proposed from differing perspectives. Nonetheless, most of the existing solutions are designed for general or high-performance systems which are different to embedded systems. For embedded systems, the soft-error solutions must be cost-efficient, which requires the tailoring of the processor architecture with respect to the feature of the target application. This thesis embodies a series of explorations for cost-efficient soft-error solutions for ASIP-based embedded systems. In this exploration, five major solutions are proposed. The first proposed solution realizes checkpoint recovery in ASIPs. By generating customized instructions, ASIP-implemented checkpoint recovery can perform at a finer granularity than what was previously possible. The fault-free performance overhead of this solution is only 1.45% on average. The recovery delay is only 62 cycles at the worst case. The area and leakage power overheads are 44.4% and 45.6% on average. The second solution explores utilizing two primitive error recovery techniques jointly. This solution includes three application-specific optimization methodologies. This solution generates the optimized error-resilient ASIPs, based on the characteristics of primitive error recovery techniques, static reliability analysis and design constraints. The resultant ASIP can be configured to perform at runtime according to the optimized recovery scheme. This solution can strategically enhance cost-efficiency for error recovery. In order to guarantee cost-efficiency in unpredictable runtime situations, the third solution explores runtime adaptation for error recovery. This solution aims to budget and adapt the error recovery operations, so as to spend the resources intelligently and to tolerate adverse influences of runtime variations. The resultant ASIP can make runtime decisions to determine the activation of spatial and temporal redundancies, according to the runtime situations. At the best case, this solution can achieve almost 50x reliability gain over the state of the art solutions. Given the increasing demand for multi-core computing systems, the last two proposed solutions target error recovery in multi-core ASIPs. The first solution of these two explores ASIP-implemented fine-grained process migration. This solution is a key infrastructure, which allows cost-efficient task management, for realizing cost-efficient soft-error recovery in multi-core ASIPs. The average time cost is only 289 machine cycles to perform process migration. The last solution explores using dynamic and adaptive mapping to assign heterogeneous recovery operations to the tasks in the multi-core context. This solution allows each individual ASIP-based processing core to dynamically adapt its specific error recovery functionality according to the corresponding task's characteristics, in terms of soft error vulnerability and execution time deadline. This solution can significantly improve the reliability of the system by almost two times, with graceful constraint penalty, in comparison to the state-of-the-art counterparts

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    Application-specific instruction set processor for speech recognition.

    Get PDF
    Cheung Man Ting.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 69-71).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- The Emergence of ASIP --- p.1Chapter 1.1.1 --- Related Work --- p.3Chapter 1.2 --- Motivation --- p.6Chapter 1.3 --- ASIP Design Methodologies --- p.7Chapter 1.4 --- Fundamentals of Speech Recognition --- p.8Chapter 1.5 --- Thesis outline --- p.10Chapter 2 --- Automatic Speech Recognition --- p.11Chapter 2.1 --- Overview of ASR system --- p.11Chapter 2.2 --- Theory of Front-end Feature Extraction --- p.12Chapter 2.3 --- Theory of HMM-based Speech Recognition --- p.14Chapter 2.3.1 --- Hidden Markov Model (HMM) --- p.14Chapter 2.3.2 --- The Typical Structure of the HMM --- p.14Chapter 2.3.3 --- Discrete HMMs and Continuous HMMs --- p.15Chapter 2.3.4 --- The Three Basic Problems for HMMs --- p.17Chapter 2.3.5 --- Probability Evaluation --- p.18Chapter 2.4 --- The Viterbi Search Engine --- p.19Chapter 2.5 --- Isolated Word Recognition (IWR) --- p.22Chapter 3 --- Design of ASIP Platform --- p.24Chapter 3.1 --- Instruction Fetch --- p.25Chapter 3.2 --- Instruction Decode --- p.26Chapter 3.3 --- Datapath --- p.29Chapter 3.4 --- Register File Systems --- p.30Chapter 3.4.1 --- Memory Hierarchy --- p.30Chapter 3.4.2 --- Register File Organization --- p.31Chapter 3.4.3 --- Special Registers --- p.34Chapter 3.4.4 --- Address Generation --- p.34Chapter 3.4.5 --- Load and Store --- p.36Chapter 4 --- Implementation of Speech Recognition on ASIP --- p.37Chapter 4.1 --- Hardware Architecture Exploration --- p.37Chapter 4.1.1 --- Floating Point and Fixed Point --- p.37Chapter 4.1.2 --- Multiplication and Accumulation --- p.38Chapter 4.1.3 --- Pipelining --- p.41Chapter 4.1.4 --- Memory Architecture --- p.43Chapter 4.1.5 --- Saturation Logic --- p.44Chapter 4.1.6 --- Specialized Addressing Modes --- p.44Chapter 4.1.7 --- Repetitive Operation --- p.47Chapter 4.2 --- Software Algorithm Implementation --- p.49Chapter 4.2.1 --- Implementation Using Base Instruction Set --- p.49Chapter 4.2.2 --- Implementation Using Refined Instruction Set --- p.54Chapter 5 --- Simulation Results --- p.56Chapter 6 --- Conclusions and Future Work --- p.60Appendices --- p.62Chapter A --- Base Instruction Set --- p.62Chapter B --- Special Registers --- p.65Chapter C --- Chip Microphotograph of ASIP --- p.67Chapter D --- The Testing Board of ASIP --- p.68Bibliography --- p.6
    corecore