26 research outputs found

    ENOC : rede-em-chip expansível

    Get PDF
    Orientador: Luiz Carlos Pessoa AlbiniCoorientador: Marco Antonio Zanata AlvesTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 10/02/2018Inclui referências: p. 71-81Resumo: Os sistemas multiprocessados integrados em chip têm emergido como uma importante tendência para projetos de sistemas em chip. Estes sistemas são formados por vários elementos de processamento conectados originalmente por um barramento compartilhado. Este barramento possui restrições à crescente integração de mais elementos de processamento em um único chip, pois não permite a comunicação paralela e à medida que os elementos aumentam o barramento apresenta menor desempenho na comunicação devido a capacidade fixa. A rede em chip, do inglês Network-on-Chip (NoC), é uma alternativa ao barramento que permite a comunicação paralela e escalável entre os diferentes elementos de processamento de um chip. Tradicionalmente, a NoC é composta por interligações metálicas entre os roteadores e cada roteador é ligado a um elemento de processamento, a comunicação acontece por encaminhamento de pacotes seguindo um determinado algoritmo de roteamento. Esta comunicação pode ser estendida de ligações metálicas para ligações sem fio principalmente para mitigar a latência resultante dos diversos saltos necessários para comunicar elementos de processamento de um chip, em especial dos mais distantes, uma vez que na comunicação sem fio o pacote é transmitido com apenas um salto. Entretanto, há sobrecustos em utilizar esta tecnologia, e por isto várias pesquisas abordam a interligação de apenas regiões do chip, e não todos os elementos. Mesmo com a evolução das formas de comunicação em um chip, a capacidade de um sistema em chip estava limitada aos seus elementos inseridos em momento de fabricação. Esta tese apresenta a ENoC, uma rede em chip expansível capaz de interligar sistemas em chip distintos reconfigurando-se para oferecer uma visão única de sistema com processamento paralelo distribuído por passagem de mensagem. A arquitetura e a comunicação na ENoC são apresentadas juntamente com uma discussão sobre o uso de sistema operacional e organização da memória. A avaliação é realizada por meio de simulações e análise de desempenho. A segurança da comunicação entre os chips é discutida e sistemas de criptografias são avaliados para manter a confidencialidade da informação. Com os resultados dos experimentos concluímos que a ENoC é uma abordagem adequada para a expandir os recursos entre chips e que cada sistema de criptografia possui vantagens e desvantagens próprias para proteger a comunicação sem fio entre as ENoCs, e a escolha de qual criptossistema é uma decisão de projeto. Palavras-chave: sistema em chip, rede em chip, criptografia.Abstract: Multiprocessor Systems-on-Chip has emerged as an important trend for System-on-Chip designs. These systems consists in several processing elements interconnected, originally, by a shared bus. This bus has restrictions to the increasing integration of many processing elements in a single chip, due to does not allow the parallel communication and as the elements increase the bus presents fewer communication performance because its capacity is fixed. The Network-on-Chip (NoC) is an alternative to the bus that allows parallel and scalable communication among all processing elements on chip. Traditionally, the NoC is made up of metallic wired interconnecting the routers and each router is connected to a processing element, the communication is performed by packets routing following a routing algorithm. This communication may be extended from metal wired links to wireless links, mainly to mitigate the latency from several needed hops to communicate processing elements, in special, the more distant ones, once in wireless communication the packet is transmitted by a single hop. However, there are additional costs in using this technology, and for this reason several researches focus on interconnecting only chip regions, not all elements. Even with the evolution of communication on NoC, the capacity of a system-on-chip was limited to its elements at manufacture time. This thesis presents the ENoC, an Expansible Network-on-Chip capable of interconnecting distinct reconfigurable SoCs to provide a single system view with parallel processing distributed by message passing. The architecture and communication of ENoC are presented within a discussion of operational system and memory organization. The evaluation is performed by simulation and performance analysis. The security of inter-chip communication is discussed and cryptography systems are evaluated to offer a confidentiality of the information. With the results, we conclude that the ENoC is a suitable approach to expand the resources between chips and that each encryption system has its own advantages and disadvantages in order to protect the wireless inter-chip communication, in such way, the choice of which criptosystem is a design decision. Keywords: system-on-chip, network-on-chip, cryptography

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends

    Hybrid Multiresolution Simulation & Model Checking: Network-On-Chip Systems

    Get PDF
    abstract: Designers employ a variety of modeling theories and methodologies to create functional models of discrete network systems. These dynamical models are evaluated using verification and validation techniques throughout incremental design stages. Models created for these systems should directly represent their growing complexity with respect to composition and heterogeneity. Similar to software engineering practices, incremental model design is required for complex system design. As a result, models at early increments are significantly simpler relative to real systems. While experimenting (verification or validation) on models at early increments are computationally less demanding, the results of these experiments are less trustworthy and less rewarding. At any increment of design, a set of tools and technique are required for controlling the complexity of models and experimentation. A complex system such as Network-on-Chip (NoC) may benefit from incremental design stages. Current design methods for NoC rely on multiple models developed using various modeling frameworks. It is useful to develop frameworks that can formalize the relationships among these models. Fine-grain models are derived using their coarse-grain counterparts. Moreover, validation and verification capability at various design stages enabled through disciplined model conversion is very beneficial. In this research, Multiresolution Modeling (MRM) is used for system level design of NoC. MRM aids in creating a family of models at different levels of scale and complexity with well-formed relationships. In addition, a variant of the Discrete Event System Specification (DEVS) formalism is proposed which supports model checking. Hierarchical models of Network-on-Chip components may be created at different resolutions while each model can be validated using discrete-event simulation and verified via state exploration. System property expressions are defined in the DEVS language and developed as Transducers which can be applied seamlessly for model checking and simulation purposes. Multiresolution Modeling with verification and validation capabilities of this framework complement one another. MRM manages the scale and complexity of models which in turn can reduces V&V time and effort and conversely the V&V helps ensure correctness of models at multiple resolutions. This framework is realized through extending the DEVS-Suite simulator and its applicability demonstrated for exemplar NoC models.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Physical parameter-aware Networks-on-Chip design

    Get PDF
    PhD ThesisNetworks-on-Chip (NoCs) have been proposed as a scalable, reliable and power-efficient communication fabric for chip multiprocessors (CMPs) and multiprocessor systems-on-chip (MPSoCs). NoCs determine both the performance and the reliability of such systems, with a significant power demand that is expected to increase due to developments in both technology and architecture. In terms of architecture, an important trend in many-core systems architecture is to increase the number of cores on a chip while reducing their individual complexity. This trend increases communication power relative to computation power. Moreover, technology-wise, power-hungry wires are dominating logic as power consumers as technology scales down. For these reasons, the design of future very large scale integration (VLSI) systems is moving from being computation-centric to communication-centric. On the other hand, chip’s physical parameters integrity, especially power and thermal integrity, is crucial for reliable VLSI systems. However, guaranteeing this integrity is becoming increasingly difficult with the higher scale of integration due to increased power density and operating frequencies that result in continuously increasing temperature and voltage drops in the chip. This is a challenge that may prevent further shrinking of devices. Thus, tackling the challenge of power and thermal integrity of future many-core systems at only one level of abstraction, the chip and package design for example, is no longer sufficient to ensure the integrity of physical parameters. New designtime and run-time strategies may need to work together at different levels of abstraction, such as package, application, network, to provide the required physical parameter integrity for these large systems. This necessitates strategies that work at the level of the on-chip network with its rising power budget. This thesis proposes models, techniques and architectures to improve power and thermal integrity of Network-on-Chip (NoC)-based many-core systems. The thesis is composed of two major parts: i) minimization and modelling of power supply variations to improve power integrity; and ii) dynamic thermal adaptation to improve thermal integrity. This thesis makes four major contributions. The first is a computational model of on-chip power supply variations in NoCs. The proposed model embeds a power delivery model, an NoC activity simulator and a power model. The model is verified with SPICE simulation and employed to analyse power supply variations in synthetic and real NoC workloads. Novel observations regarding power supply noise correlation with different traffic patterns and routing algorithms are found. The second is a new application mapping strategy aiming vii to minimize power supply noise in NoCs. This is achieved by defining a new metric, switching activity density, and employing a force-based objective function that results in minimizing switching density. Significant reductions in power supply noise (PSN) are achieved with a low energy penalty. This reduction in PSN also results in a better link timing accuracy. The third contribution is a new dynamic thermal-adaptive routing strategy to effectively diffuse heat from the NoC-based threedimensional (3D) CMPs, using a dynamic programming (DP)-based distributed control architecture. Moreover, a new approach for efficient extension of two-dimensional (2D) partially-adaptive routing algorithms to 3D is presented. This approach improves three-dimensional networkon- chip (3D NoC) routing adaptivity while ensuring deadlock-freeness. Finally, the proposed thermal-adaptive routing is implemented in field-programmable gate array (FPGA), and implementation challenges, for both thermal sensing and the dynamic control architecture are addressed. The proposed routing implementation is evaluated in terms of both functionality and performance. The methodologies and architectures proposed in this thesis open a new direction for improving the power and thermal integrity of future NoC-based 2D and 3D many-core architectures

    Hierarchical Agent-based Adaptation for Self-Aware Embedded Computing Systems

    Get PDF
    Siirretty Doriast

    On Energy Efficient Computing Platforms

    Get PDF
    In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.Siirretty Doriast

    Embedded dynamic programming networks for networks-on-chip

    Get PDF
    PhD ThesisRelentless technology downscaling and recent technological advancements in three dimensional integrated circuit (3D-IC) provide a promising prospect to realize heterogeneous system-on-chip (SoC) and homogeneous chip multiprocessor (CMP) based on the networks-onchip (NoCs) paradigm with augmented scalability, modularity and performance. In many cases in such systems, scheduling and managing communication resources are the major design and implementation challenges instead of the computing resources. Past research efforts were mainly focused on complex design-time or simple heuristic run-time approaches to deal with the on-chip network resource management with only local or partial information about the network. This could yield poor communication resource utilizations and amortize the benefits of the emerging technologies and design methods. Thus, the provision for efficient run-time resource management in large-scale on-chip systems becomes critical. This thesis proposes a design methodology for a novel run-time resource management infrastructure that can be realized efficiently using a distributed architecture, which closely couples with the distributed NoC infrastructure. The proposed infrastructure exploits the global information and status of the network to optimize and manage the on-chip communication resources at run-time. There are four major contributions in this thesis. First, it presents a novel deadlock detection method that utilizes run-time transitive closure (TC) computation to discover the existence of deadlock-equivalence sets, which imply loops of requests in NoCs. This detection scheme, TC-network, guarantees the discovery of all true-deadlocks without false alarms in contrast to state-of-the-art approximation and heuristic approaches. Second, it investigates the advantages of implementing future on-chip systems using three dimensional (3D) integration and presents the design, fabrication and testing results of a TC-network implemented in a fully stacked three-layer 3D architecture using a through-silicon via (TSV) complementary metal-oxide semiconductor (CMOS) technology. Testing results demonstrate the effectiveness of such a TC-network for deadlock detection with minimal computational delay in a large-scale network. Third, it introduces an adaptive strategy to effectively diffuse heat throughout the three dimensional network-on-chip (3D-NoC) geometry. This strategy employs a dynamic programming technique to select and optimize the direction of data manoeuvre in NoC. It leads to a tool, which is based on the accurate HotSpot thermal model and SystemC cycle accurate model, to simulate the thermal system and evaluate the proposed approach. Fourth, it presents a new dynamic programming-based run-time thermal management (DPRTM) system, including reactive and proactive schemes, to effectively diffuse heat throughout NoC-based CMPs by routing packets through the coolest paths, when the temperature does not exceed chip’s thermal limit. When the thermal limit is exceeded, throttling is employed to mitigate heat in the chip and DPRTM changes its course to avoid throttled paths and to minimize the impact of throttling on chip performance. This thesis enables a new avenue to explore a novel run-time resource management infrastructure for NoCs, in which new methodologies and concepts are proposed to enhance the on-chip networks for future large-scale 3D integration.Iraqi Ministry of Higher Education and Scientific Research (MOHESR)
    corecore