7,310 research outputs found

    A Data Cube Extraction Pipeline for a Coronagraphic Integral Field Spectrograph

    Get PDF
    Project 1640 is a high contrast near-infrared instrument probing the vicinities of nearby stars through the unique combination of an integral field spectrograph with a Lyot coronagraph and a high-order adaptive optics system. The extraordinary data reduction demands, similar those which several new exoplanet imaging instruments will face in the near future, have been met by the novel software algorithms described herein. The Project 1640 Data Cube Extraction Pipeline (PCXP) automates the translation of 3.8*10^4 closely packed, coarsely sampled spectra to a data cube. We implement a robust empirical model of the spectrograph focal plane geometry to register the detector image at sub-pixel precision, and map the cube extraction. We demonstrate our ability to accurately retrieve source spectra based on an observation of Saturn's moon Titan.Comment: 35 pages, 15 figures; accepted for publication in PAS

    A Tool for Aligning Event Logs and Prescriptive Process Models through Automated Planning

    Get PDF
    In Conformance Checking, alignment is the problem of detecting and repairing nonconformity between the actual execution of a business process, as recorded in an event log, and the model of the same process. Literature proposes solutions for the alignment problem that are implementations of planning algorithms built ad-hoc for the specific problem. Unfortunately, in the era of big data, these ad-hoc implementations do not scale sufficiently compared with well-established planning systems. In this paper, we tackle the above issue by presenting a tool, also available in ProM, to represent instances of the alignment problem as automated planning problems in PDDL (Planning Domain Definition Language) for which state-of-the-art planners can find a correct solution in a finite amount of time. If alignment problems are converted into planning problems, one can seamlessly update to the recent versions of the best performing automated planners, with advantages in term of versatility and customization. Furthermore, by employing several processes and event logs of different sizes, we show how our tool outperforms existing approaches of several order of magnitude and, in certain cases, carries out the task while existing approaches run out of memory

    Structural alphabets derived from attractors in conformational space

    Get PDF
    Background: The hierarchical and partially redundant nature of protein structures justifies the definition of frequently occurring conformations of short fragments as 'states'. Collections of selected representatives for these states define Structural Alphabets, describing the most typical local conformations within protein structures. These alphabets form a bridge between the string-oriented methods of sequence analysis and the coordinate-oriented methods of protein structure analysis.Results: A Structural Alphabet has been derived by clustering all four-residue fragments of a high-resolution subset of the protein data bank and extracting the high-density states as representative conformational states. Each fragment is uniquely defined by a set of three independent angles corresponding to its degrees of freedom, capturing in simple and intuitive terms the properties of the conformational space. The fragments of the Structural Alphabet are equivalent to the conformational attractors and therefore yield a most informative encoding of proteins. Proteins can be reconstructed within the experimental uncertainty in structure determination and ensembles of structures can be encoded with accuracy and robustness.Conclusions: The density-based Structural Alphabet provides a novel tool to describe local conformations and it is specifically suitable for application in studies of protein dynamics. © 2010 Pandini et al; licensee BioMed Central Ltd
    • 

    corecore