75,827 research outputs found

    A toy model of open membrane field theory in constant 3-form flux

    Get PDF
    Based on an explicit computation of the scattering amplitude of four open membranes in a constant 3-form background, we construct a toy model of the field theory for open membranes in the large C field limit. It is a generalization of the noncommutative field theories which describe open strings in a constant 2-form flux. The noncommutativity due to the B-field background is now replaced by a nonassociative triplet product. The triplet product satisfies the consistency conditions of lattice 3d gravity, which is inherent in the world-volume theory of open membranes. We show the UV/IR mixing of the toy model by computing some Feynman diagrams. Inclusion of the internal degree of freedom is also possible through the idea of the cubic matrix.Comment: 31 pages, latex, 2 eps figure

    Including gaussian uncertainty on the background estimate for upper limit calculations using Poissonian sampling

    Full text link
    A procedure to include the uncertainty on the background estimate for upper limit calculations using Poissonian sampling is presented for the case where a Gaussian assumption on the uncertainty can be made. Under that hypothesis an analytic expression of the likelihood is derived which can be written in terms of polynomials defined by recursion. This expression may lead to a significant speed up of computing applications that extract the upper limits using Toy Monte Carlo.Comment: 6 pages, 2 figures, accepted for publication in Nucl.Instrum.Meth.

    A glance of child’s play privacy in smart toys

    Get PDF
    © Springer International Publishing AG 2016. A smart toy is defined as a device consisting of a physical toy component that connects to one or more toy computing services to facilitate gameplay in the Cloud through networking and sensory technologies to enhance the functionality of a traditional toy. A smart toy in this context can be effectively considered an Internet of Things (IoT) with Artificial Intelligence (AI) which can provide Augmented Reality (AR) experiences to users. Referring to the direction of the United States Federal Trade Commission Children’s Online Privacy Protection Act (COPPA) and the European Union Data Protection Directive (EUDPD), this study adopts the definition of a child to be an individual under the age of 13 years old. In this study, the first assumption is that children do not understand the concept of privacy. The second assumption is that children will disclose as much information to smart toys as they can trust. Breaches of privacy can result in physical safety of child user, e.g., child predators. While the parents/legal guardians of a child strive to ensure their child’s physical and online safety and privacy, there is no common approach for these parents/guardians to study the information flow between their child and the smart toys they interact with. This paper discusses related privacy requirements for smart toys in a toy computing environment with a case study on a commercial smart toy called Hello Barbie from Mattel

    Tracing Through Scalar Entanglement

    Full text link
    As a toy model of a gapped system, we investigate the entanglement entropy of a massive scalar field in 1+1 dimensions at nonzero temperature. In a small mass m and temperature T limit, we put upper and lower bounds on the two largest eigenvalues of the covariance matrix used to compute the entanglement entropy. We argue that the entanglement entropy has exp(-m/T) scaling in the limit m >> T. We comment on the relation between our work and the Ryu-Takayanagi proposal for computing the entanglement entropy holographically.Comment: 17 pages, 11 figures; v2 ref added, typos fixed; v3 refs added, minor clarifications, version to appear in PR

    Towards a Privacy Rule Conceptual Model for Smart Toys

    Get PDF
    A smart toy is defined as a device consisting of a physical toy component that connects to one or more toy computing services to facilitate gameplay in the cloud through networking and sensory technologies to enhance the functionality of a traditional toy. A smart toy in this context can be effectively considered an Internet of Things (IoT) with Artificial Intelligence (AI) which can provide Augmented Reality (AR) experiences to users. In this paper, the first assumption is that children do not understand the concept of privacy and the children do not know how to protect themselves online, especially in a social media and cloud environment. The second assumption is that children may disclose private information to smart toys and not be aware of the possible consequences and liabilities. This paper presents a privacy rule conceptual model with the concepts of smart toy, mobile service, device, location, and guidance with related privacy entities: purpose, recipient, obligation, and retention for smart toys. Further the paper also discusses an implementation of the prototype interface with sample scenarios for future research works

    Perceived Innovativeness and Privacy Risk of Smart Toys in Brazil and Argentina

    Get PDF
    A smart toy, such as Hello Barbie, is a device consisting of a physical toy component that connects to a computing system with online services through networking to enhance the functionality of a traditional toy. Whilst these are new educational and entertaining values of smart toys, experts in western countries such as U.S. and Germany have warned consumers of the data security and privacy issues of these toys. In this preliminary research study, we particularly studied Brazilian and Argentinian consumers’ perceived innovativeness, risks and benefits of smart toys and their purchase intention toward such toys. Results indicate that Brazilian consumers have better perception and evaluation of the toy and thus higher purchase intention than Argentinian consumers do. Such difference may be explained by the cultural differences be-tween the two countries, such as relatively low vs. high uncertainty avoidance
    • 

    corecore