7 research outputs found

    Two Combinatorial Optimization Problems at the Interface of Computer Science and Operations Research

    Get PDF
    Solving large combinatorial optimization problems is a ubiquitous task across multiple disciplines. Developing efficient procedures for solving these problems has been of great interest to both researchers and practitioners. Over the last half century, vast amounts of research have been devoted to studying various methods in tackling these problems. These methods can be divided into two categories, heuristic methods and exact algorithms. Heuristic methods can often lead to near optimal solutions in a relatively time efficient manner, but provide no guarantees on optimality. Exact algorithms guarantee optimality, but are often very time consuming. This dissertation focuses on designing efficient exact algorithms that can solve larger problem instances with faster computational time. A general framework for an exact algorithm, called the Branch, Bound, and Remember algorithm, is proposed in this dissertation. Three variations of single machine scheduling problems are presented and used to evaluate the efficiency of the Branch, Bound, and Remember algorithm. The computational results show that the Branch, Bound, and Remember algorithms outperforms the best known algorithms in the literature. While the Branch, Bound, and Remember algorithm can be used for solving combinatorial optimization problems, it does not address the subject of post-optimality selection after the combinatorial optimization problem is solved. Post-optimality selection is a common problem in multi-objective combinatorial optimization problems where there exists a set of optimal solutions called Pareto optimal (non-dominated) solutions. Post-optimality selection is the process of selecting the best solutions within the Pareto optimal solution set. In many real-world applications, a Pareto solution set (either optimal or near-optimal) can be extremely large, and can be very challenging for a decision maker to evaluate and select the best solution. To address the post-optimality selection problem, this dissertation also proposes a new discrete optimization problem to help the decision-maker to obtain an optimal preferred subset of Pareto optimal solutions. This discrete optimization problem is proven to be NP-hard. To solve this problem, exact algorithms and heuristic methods are presented. Different multi-objective problems with various numbers of objectives and constraints are used to compare the performances of the proposed algorithms and heuristics

    Deterministic and stochastic scheduling: : Extended abstracts

    Get PDF

    GSI Scientific Report 2007 [GSI Report 2008-1]

    Get PDF

    11th International Coral Reef Symposium Proceedings

    Get PDF
    A defining theme of the 11th International Coral Reef Symposium was that the news for coral reef ecosystems are far from encouraging. Climate change happens now much faster than in an ice-age transition, and coral reefs continue to suffer fever-high temperatures as well as sour ocean conditions. Corals may be falling behind, and there appears to be no special silver bullet remedy. Nevertheless, there are hopeful signs that we should not despair. Reef ecosystems respond vigorously to protective measures and alleviation of stress. For concerned scientists, managers, conservationists, stakeholders, students, and citizens, there is a great role to play in continuing to report on the extreme threat that climate change represents to earth’s natural systems. Urgent action is needed to reduce CO2 emissions. In the interim, we can and must buy time for coral reefs through increased protection from sewage, sediment, pollutants, overfishing, development, and other stressors, all of which we know can damage coral health. The time to act is now. The canary in the coral-coal mine is dead, but we still have time to save the miners. We need effective management rooted in solid interdisciplinary science and coupled with stakeholder buy in, working at local, regional, and international scales alongside global efforts to give reefs a chance.https://nsuworks.nova.edu/occ_icrs/1000/thumbnail.jp
    corecore