506 research outputs found

    Privacy-preserving smart metering revisited

    Get PDF
    Privacy-preserving billing protocols are useful in settings where a meter measures user consumption of some service, such as smart metering of utility consumption, pay-as-you-drive insurance and electronic toll collection. In such settings, service providers apply fine-grained tariff policies that require meters to provide a detailed account of user consumption. The protocols allow the user to pay to the service provider without revealing the user’s consumption measurements. Our contribution is twofold. First, we propose a general model where a meter can output meter readings to multiple users, and where a user receives meter readings from multiple meters. Unlike previous schemes, our model accommodates a wider variety of smart metering applications. Second, we describe a protocol based on polynomial commitments that improves the efficiency of previous protocols for tariff policies that employ splines to compute the price due

    Secure and Privacy-Preserving Cloud-Assisted Computing

    Get PDF
    Smart devices such as smartphones, wearables, and smart appliances collect significant amounts of data and transmit them over the network forming the Internet of Things (IoT). Many applications in our daily lives (e.g., health, smart grid, traffic monitoring) involve IoT devices that often have low computational capabilities. Subsequently, powerful cloud servers are employed to process the data collected from these devices. Nevertheless, security and privacy concerns arise in cloud-assisted computing settings. Collected data can be sensitive, and it is essential to protect their confidentiality. Additionally, outsourcing computations to untrusted cloud servers creates the need to ensure that servers perform the computations as requested and that any misbehavior can be detected, safeguarding security. Cryptographic primitives and protocols are the foundation to design secure and privacy-preserving solutions that address these challenges. This thesis focuses on providing privacy and security guarantees when outsourcing heavy computations on sensitive data to untrusted cloud servers. More concretely, this work: (a) \ua0provides solutions for outsourcing the secure computation of the sum and the product functions in the multi-server, multi-client setting, protecting the sensitive data of the data owners, even against potentially untrusted cloud servers; (b) \ua0provides integrity guarantees for the proposed protocols, by enabling anyone to verify the correctness of the computed function values. More precisely, the employed servers or the clients (depending on the proposed solution) provide specific values which are the proofs that the computed results are correct; (c) \ua0designs decentralized settings, where multiple cloud servers are employed to perform the requested computations as opposed to relying on a single server that might fail or lose connection; (d) \ua0suggests ways to protect individual privacy and provide integrity. More pre- cisely, we propose a verifiable differentially private solution that provides verifiability and avoids any leakage of information regardless of the participa- tion of some individual’s sensitive data in the computation or not

    Value activity monitoring

    Get PDF

    Towards a secure service provisioning framework in a Smart city environment

    Get PDF
    © 2017 Elsevier B.V. Over the past few years the concept of Smart cities has emerged to transform urban areas into connected and well informed spaces. Services that make smart cities “smart” are curated by using data streams of smart cities i.e., inhabitants’ location information, digital engagement, transportation, environment and local government data. Accumulating and processing of these data streams raise security and privacy concerns at individual and community levels. Sizeable attempts have been made to ensure the security and privacy of inhabitants’ data. However, the security and privacy issues of smart cities are not only confined to inhabitants; service providers and local governments have their own reservations — service provider trust, reliability of the sensed data, and data ownership, to name a few. In this research we identified a comprehensive list of stakeholders and modelled their involvement in smart cities by using the Onion Model approach. Based on the model we present a security and privacy-aware framework for service provisioning in smart cities, namely the ‘Smart Secure Service Provisioning’ (SSServProv) Framework. Unlike previous attempts, our framework provides end-to-end security and privacy features for trustable data acquisition, transmission, processing and legitimate service provisioning. The proposed framework ensures inhabitants’ privacy, and also guarantees integrity of services. It also ensures that public data is never misused by malicious service providers. To demonstrate the efficacy of SSServProv we developed and tested core functionalities of authentication, authorisation and lightweight secure communication protocol for data acquisition and service provisioning. For various smart cities service provisioning scenarios we verified these protocols by an automated security verification tool called Scyther

    Mind My Value: a decentralized infrastructure for fair and trusted IoT data trading

    Full text link
    Internet of Things (IoT) data are increasingly viewed as a new form of massively distributed and large scale digital assets, which are continuously generated by millions of connected devices. The real value of such assets can only be realized by allowing IoT data trading to occur on a marketplace that rewards every single producer and consumer, at a very granular level. Crucially, we believe that such a marketplace should not be owned by anybody, and should instead fairly and transparently self-enforce a well defined set of governance rules. In this paper we address some of the technical challenges involved in realizing such a marketplace. We leverage emerging blockchain technologies to build a decentralized, trusted, transparent and open architecture for IoT traffic metering and contract compliance, on top of the largely adopted IoT brokered data infrastructure. We discuss an Ethereum-based prototype implementation and experimentally evaluate the overhead cost associated with Smart Contract transactions, concluding that a viable business model can indeed be associated with our technical approach

    Vulnerability and resistance in the United Kingdom’s smart meter transition

    Get PDF
    The Smart Meter Implementation Program (SMIP) lays the legal framework in the United Kingdom so that a smart gas and electricity meter, along with an in-home display, can be installed in every household by 2020. Intended to reduce national household energy consumption by 5-15%, the SMIP represents arguably the world’s largest and most expensive smart meter rollout. However, a series of obstacles and delays has restricted implementation, and progress has been far more sluggish than envisioned. To explore why, this study utilizes a mixed methods approach to investigate the socio-technical challenges facing the SMIP, with a strong emphasis on the “social” side of the equation. It first explains its two primary sources of data, a systematic review of the academic literature coupled with participant observation of seven major SMIP events in the UK during 2015-2016. It then offers a history of the SMIP rollout, including a summary of 67 potential benefits as well as the often-discussed technical challenges, before delving into pertinent non-technical challenges, specifically vulnerability as well as consumer resistance and ambivalence. The article argues that the dominant focus on technical problems may obscure societal issues that the implementation program must address. In doing so, the paper not only presents a critique of the UK’s implementation program for smart meters, it also offers a review of academic studies on consumer responses to smart meters, an analysis of the intersection between smart meters and other social concerns such as poverty or the marginalization of rural areas, and the generation of lessons for other smart meter programs
    • 

    corecore