5,266 research outputs found

    Towards User-Centric Operation in 5G Networks

    Get PDF
    © 2016 Monserrat et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.There are three pillars that characterize the new 5G revolution, namely, the use of heterogeneous wireless access technologies conforming an ultra-dense network, the software-driven flexibility of this network, and the simplified and user-centric operation and management of the system. This next-generation network operation and management shall be based on the usage of Big Data Analytics techniques to monitor the end-user quality of experience through direct measures of the network. This paper describes the Astellia approach towards this network revolution and presents some results on the performance of quality estimation techniques in current cellular networks. Thanks to the use of this approach, operators may fill the gap of knowledge between network key performance indicators and user experience. This way, they can operate in a proactive manner and have actual measurements of the users' experience, which leads to a fairer judgement of the users' complaints.The authors would like to thank the funding received from the Ministerio de Industria, Energia y Turismo TSI-100102-2013-106 funds.Monserrat Del Río, JF.; Alepuz Benaches, I.; Cabrejas Peñuelas, J.; Osa Ginés, V.; López Bayo, J.; García-Zarza, R.; Domenech-Benlloch, MJ.... (2016). Towards User-Centric Operation in 5G Networks. EURASIP Journal on Wireless Communications and Networking. 2016(6):1-7. https://doi.org/10.1186/s13638-015-0506-zS1720166J Monserrat et al., Rethinking the mobile and wireless network architecture: the METIS research into 5G, in European Conference on Networks and Communications (EuCNC), 2014, pp. 1–55G-PPP, The 5G Infrastructure Public Private Partnership: the next generation of communication networks and services, 2015. Available at http://5g-ppp.eu/wp-content/uploads/2015/02/5G-Vision-Brochure-v1.pdfJF Monserrat, M Fallgren (eds.), Report on simulation results and evaluations, 2015. ICT-317669 METIS Deliverable 6.5Z Yingxiao, Z Ying Jun, User-centric virtual cell design for Cloud Radio Access Networks, in IEEE Signal Processing Advances in Wireless Communications (SPAWC), 2014, pp. 249–253JF Monserrat, G Mange, V Braun, H Tullberg, G Zimmermann, Ö Bulakci, METIS research advances towards the 5G mobile and wireless system definition. EURASIP. J. Wirel. Commun. Netw. 2015, 53 (2015)F Boccardi, RW Heath, A Lozano, TL Marzetta, P Popovski, Five disruptive technology directions for 5G. IEEE. Commun. Mag. 52(2), 74–80 (2014)P Agyapong, M Iwamura, D Staehle, W Kiess, A Benjebbour, Design considerations for a 5G network architecture. IEEE. Commun. Mag. 52(11), 65–75 (2014)Nokia Siemens Networks, Acquisition and retention white paper, 2013. http://networks.nokia.com/sites/default/files/document/acquisition___retention_white_paper.pdfDZ Yazti, S Krishnaswamy, Mobile big data analytics: research, practice, and opportunities, in IEEE 15th International Conference on Mobile Data Management (MDM), 2014R Kreher, UMTS performance measurement: a practical guide to KPIs for the UTRAN environment (Wiley, Chichester, 2006)S Mehrotra, On the implementation of a primal-dual interior point method. SIAM. J. Optim. 2, 575–601 (1992)V Osa, J Matamales, J Monserrat, J Lopez, Localization in wireless networks: the potential of triangulation techniques. Wirel. Pers. Commun. 68(4), 1525–1538 (2013

    Will 5G See its Blind Side? Evolving 5G for Universal Internet Access

    Get PDF
    Internet has shown itself to be a catalyst for economic growth and social equity but its potency is thwarted by the fact that the Internet is off limits for the vast majority of human beings. Mobile phones---the fastest growing technology in the world that now reaches around 80\% of humanity---can enable universal Internet access if it can resolve coverage problems that have historically plagued previous cellular architectures (2G, 3G, and 4G). These conventional architectures have not been able to sustain universal service provisioning since these architectures depend on having enough users per cell for their economic viability and thus are not well suited to rural areas (which are by definition sparsely populated). The new generation of mobile cellular technology (5G), currently in a formative phase and expected to be finalized around 2020, is aimed at orders of magnitude performance enhancement. 5G offers a clean slate to network designers and can be molded into an architecture also amenable to universal Internet provisioning. Keeping in mind the great social benefits of democratizing Internet and connectivity, we believe that the time is ripe for emphasizing universal Internet provisioning as an important goal on the 5G research agenda. In this paper, we investigate the opportunities and challenges in utilizing 5G for global access to the Internet for all (GAIA). We have also identified the major technical issues involved in a 5G-based GAIA solution and have set up a future research agenda by defining open research problems

    Ubiquitous Cell-Free Massive MIMO Communications

    Get PDF
    Since the first cellular networks were trialled in the 1970s, we have witnessed an incredible wireless revolution. From 1G to 4G, the massive traffic growth has been managed by a combination of wider bandwidths, refined radio interfaces, and network densification, namely increasing the number of antennas per site. Due its cost-efficiency, the latter has contributed the most. Massive MIMO (multiple-input multiple-output) is a key 5G technology that uses massive antenna arrays to provide a very high beamforming gain and spatially multiplexing of users, and hence, increases the spectral and energy efficiency. It constitutes a centralized solution to densify a network, and its performance is limited by the inter-cell interference inherent in its cell-centric design. Conversely, ubiquitous cell-free Massive MIMO refers to a distributed Massive MIMO system implementing coherent user-centric transmission to overcome the inter-cell interference limitation in cellular networks and provide additional macro-diversity. These features, combined with the system scalability inherent in the Massive MIMO design, distinguishes ubiquitous cell-free Massive MIMO from prior coordinated distributed wireless systems. In this article, we investigate the enormous potential of this promising technology while addressing practical deployment issues to deal with the increased back/front-hauling overhead deriving from the signal co-processing.Comment: Published in EURASIP Journal on Wireless Communications and Networking on August 5, 201
    • …
    corecore