89,997 research outputs found

    Combined automotive safety and security pattern engineering approach

    Get PDF
    Automotive systems will exhibit increased levels of automation as well as ever tighter integration with other vehicles, traffic infrastructure, and cloud services. From safety perspective, this can be perceived as boon or bane - it greatly increases complexity and uncertainty, but at the same time opens up new opportunities for realizing innovative safety functions. Moreover, cybersecurity becomes important as additional concern because attacks are now much more likely and severe. However, there is a lack of experience with security concerns in context of safety engineering in general and in automotive safety departments in particular. To address this problem, we propose a systematic pattern-based approach that interlinks safety and security patterns and provides guidance with respect to selection and combination of both types of patterns in context of system engineering. A combined safety and security pattern engineering workflow is proposed to provide systematic guidance to support non-expert engineers based on best practices. The application of the approach is shown and demonstrated by an automotive case study and different use case scenarios.EC/H2020/692474/EU/Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems/AMASSEC/H2020/737422/EU/Secure COnnected Trustable Things/SCOTTEC/H2020/732242/EU/Dependability Engineering Innovation for CPS - DEIS/DEISBMBF, 01IS16043, Collaborative Embedded Systems (CrESt

    Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems.

    Get PDF
    Unlike practices in electrical and mechanical equipment engineering, Cyber-Physical Systems (CPS) do not have a set of standardized and harmonized practices for assurance and certification that ensures safe, secure and reliable operation with typical software and hardware architectures. This paper presents a recent initiative called AMASS (Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems) to promote harmonization, reuse and automation of labour-intensive certification-oriented activities via using model-based approaches and incremental techniques. AMASS will develop an integrated and holistic approach, a supporting tool ecosystem and a self-sustainable community for assurance and certification of CPS. The approach will be driven by architectural decisions (fully compatible with standards, e.g. AUTOSAR and IMA), including multiple assurance concerns such as safety, security and reliability. AMASS will support seamless interoperability between assurance/certification and engineering activities along with third-party activities (external assessments, supplier assurance). The ultimate aim is to lower certification costs in face of rapidly changing product features and market needs.This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 692474. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Czech Republic, Germany, Sweden, Austria, Italy, United Kingdom, Franc

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    A hybrid and integrated approach to evaluate and prevent disasters

    Get PDF

    On Using Blockchains for Safety-Critical Systems

    Full text link
    Innovation in the world of today is mainly driven by software. Companies need to continuously rejuvenate their product portfolios with new features to stay ahead of their competitors. For example, recent trends explore the application of blockchains to domains other than finance. This paper analyzes the state-of-the-art for safety-critical systems as found in modern vehicles like self-driving cars, smart energy systems, and home automation focusing on specific challenges where key ideas behind blockchains might be applicable. Next, potential benefits unlocked by applying such ideas are presented and discussed for the respective usage scenario. Finally, a research agenda is outlined to summarize remaining challenges for successfully applying blockchains to safety-critical cyber-physical systems

    Education in 'life cycle sustainability assessment': caring for all 3 P's in one

    Get PDF
    Starting from the observation that externalities, reflecting societal concerns, emerge from costs and benefits which are not reflected in the market price, the authors of the paper emphasize the importance in education of life cycle sustainability assessment (LCSA) as a triple-bottom line tool to assess the three dimensions of sustainable development (environment, social and economy) – often referred to as the inclusive 3 P’s-approach (planet, people and profit) – of products, from cradle to grave. Especially the social LCA, as part of the overarching LCSA, has been developed to identify and to assess the social conditions throughout the life cycle of a product in order to improve human well-being. The concept of ‘social justice’ and its operationalization form the background for the development of different stakeholder categories, subcategories and indicators to undertake the social and socio-economic assessment. Two international publications (Benoüt and Mazijn, 2009; Valdivia et al., 2011) are used during teaching and training session to give an overview of the social LCA and the LCSA. These guidance for the assessment of products resulted from inter- and multidisciplinary work. It was developed with the support of the authors, who have all an engineering background, but who worked for ten years now together, inter alia, with experts from social sciences. Different training sessions have been set up and LCSA (incl. social LCA) has been part of courses at universities, all with multiple objectives of a learning curve for engineering education within the context of sustainable development. Based on that experience in different countries, the authors are formulating recommendations for future educational material. Looking back at the Declaration of Barcelona (EESD 2004) and comparing with the objectives of the formal and non-formal education on LCSA, the authors claim that LCSA (and the on-going research) provides an excellent opportunity to fulfil the requirements of Engineering Education for Sustainable Development. Answering the question ‘What is a sustainable product?’ by using LCSA is learning to deal with complexity and uncertainty across the boundaries of a diversity of disciplines
    • 

    corecore