5,362 research outputs found

    A Comprehensive Analysis of Swarming-based Live Streaming to Leverage Client Heterogeneity

    Full text link
    Due to missing IP multicast support on an Internet scale, over-the-top media streams are delivered with the help of overlays as used by content delivery networks and their peer-to-peer (P2P) extensions. In this context, mesh/pull-based swarming plays an important role either as pure streaming approach or in combination with tree/push mechanisms. However, the impact of realistic client populations with heterogeneous resources is not yet fully understood. In this technical report, we contribute to closing this gap by mathematically analysing the most basic scheduling mechanisms latest deadline first (LDF) and earliest deadline first (EDF) in a continuous time Markov chain framework and combining them into a simple, yet powerful, mixed strategy to leverage inherent differences in client resources. The main contributions are twofold: (1) a mathematical framework for swarming on random graphs is proposed with a focus on LDF and EDF strategies in heterogeneous scenarios; (2) a mixed strategy, named SchedMix, is proposed that leverages peer heterogeneity. The proposed strategy, SchedMix is shown to outperform the other two strategies using different abstractions: a mean-field theoretic analysis of buffer probabilities, simulations of a stochastic model on random graphs, and a full-stack implementation of a P2P streaming system.Comment: Technical report and supplementary material to http://ieeexplore.ieee.org/document/7497234

    CliqueStream: an efficient and fault-resilient live streaming network on a clustered peer-to-peer overlay

    Full text link
    Several overlay-based live multimedia streaming platforms have been proposed in the recent peer-to-peer streaming literature. In most of the cases, the overlay neighbors are chosen randomly for robustness of the overlay. However, this causes nodes that are distant in terms of proximity in the underlying physical network to become neighbors, and thus data travels unnecessary distances before reaching the destination. For efficiency of bulk data transmission like multimedia streaming, the overlay neighborhood should resemble the proximity in the underlying network. In this paper, we exploit the proximity and redundancy properties of a recently proposed clique-based clustered overlay network, named eQuus, to build efficient as well as robust overlays for multimedia stream dissemination. To combine the efficiency of content pushing over tree structured overlays and the robustness of data-driven mesh overlays, higher capacity stable nodes are organized in tree structure to carry the long haul traffic and less stable nodes with intermittent presence are organized in localized meshes. The overlay construction and fault-recovery procedures are explained in details. Simulation study demonstrates the good locality properties of the platform. The outage time and control overhead induced by the failure recovery mechanism are minimal as demonstrated by the analysis.Comment: 10 page

    AngelCast: cloud-based peer-assisted live streaming using optimized multi-tree construction

    Full text link
    Increasingly, commercial content providers (CPs) offer streaming solutions using peer-to-peer (P2P) architectures, which promises significant scalabil- ity by leveraging clients’ upstream capacity. A major limitation of P2P live streaming is that playout rates are constrained by clients’ upstream capac- ities – typically much lower than downstream capacities – which limit the quality of the delivered stream. To leverage P2P architectures without sacri- ficing quality, CPs must commit additional resources to complement clients’ resources. In this work, we propose a cloud-based service AngelCast that enables CPs to complement P2P streaming. By subscribing to AngelCast, a CP is able to deploy extra resources (angel), on-demand from the cloud, to maintain a desirable stream quality. Angels do not download the whole stream, nor are they in possession of it. Rather, angels only relay the minimal fraction of the stream necessary to achieve the desired quality. We provide a lower bound on the minimum angel capacity needed to maintain a desired client bit-rate, and develop a fluid model construction to achieve it. Realizing the limitations of the fluid model construction, we design a practical multi- tree construction that captures the spirit of the optimal construction, and avoids its limitations. We present a prototype implementation of AngelCast, along with experimental results confirming the feasibility of our service.Supported in part by NSF awards #0720604, #0735974, #0820138, #0952145, #1012798 #1012798 #1430145 #1414119. (0720604 - NSF; 0735974 - NSF; 0820138 - NSF; 0952145 - NSF; 1012798 - NSF; 1430145 - NSF; 1414119 - NSF

    Adaptive Streaming in P2P Live Video Systems: A Distributed Rate Control Approach

    Get PDF
    Dynamic Adaptive Streaming over HTTP (DASH) is a recently proposed standard that offers different versions of the same media content to adapt the delivery process over the Internet to dynamic bandwidth fluctuations and different user device capabilities. The peer-to-peer (P2P) paradigm for video streaming allows to leverage the cooperation among peers, guaranteeing to serve every video request with increased scalability and reduced cost. We propose to combine these two approaches in a P2P-DASH architecture, exploiting the potentiality of both. The new platform is made of several swarms, and a different DASH representation is streamed within each of them; unlike client-server DASH architectures, where each client autonomously selects which version to download according to current network conditions and to its device resources, we put forth a new rate control strategy implemented at peer site to maintain a good viewing quality to the local user and to simultaneously guarantee the successful operation of the P2P swarms. The effectiveness of the solution is demonstrated through simulation and it indicates that the P2P-DASH platform is able to warrant its users a very good performance, much more satisfying than in a conventional P2P environment where DASH is not employed. Through a comparison with a reference DASH system modeled via the Integer Linear Programming (ILP) approach, the new system is shown to outperform such reference architecture. To further validate the proposal, both in terms of robustness and scalability, system behavior is investigated in the critical condition of a flash crowd, showing that the strong upsurge of new users can be successfully revealed and gradually accommodated.Comment: 12 pages, 17 figures, this work has been submitted to the IEEE journal on selected Area in Communication

    Simulation and data analysis of peer-to-peer traffic for live video streaming

    Get PDF
    Evaluating and testing changes or configurations to peer-to-peer systems or even understanding their behaviour can be complicated. One approach is to simulate a large peer-to-peer system and visualise the results. In this master's thesis a study is performed to understand how an actual implementation of a hybrid peer-to-peer live video streaming system behaves and performs under different scenarios. The behaviour and performance of a hybrid live video streaming system consisting of an unstructured mesh-pull-based P2P network and a classic content delivery network solution is studied by simulating the system with different scenarios such as flash crowds and flash disconnects. The simulation system includes a network model taking latency and bandwidth into consideration. As expected the mesh-based system performed well under user churn. Although the system consisted of approximately 80% free-riders the utilisation of the content distribution network was reduced by 95% on average. The data analysis was successful in improving the system's overall performance. Furthermore, the visualisations and data analysis were used to understand the system's behaviour

    Poor Man's Content Centric Networking (with TCP)

    Get PDF
    A number of different architectures have been proposed in support of data-oriented or information-centric networking. Besides a similar visions, they share the need for designing a new networking architecture. We present an incrementally deployable approach to content-centric networking based upon TCP. Content-aware senders cooperate with probabilistically operating routers for scalable content delivery (to unmodified clients), effectively supporting opportunistic caching for time-shifted access as well as de-facto synchronous multicast delivery. Our approach is application protocol-independent and provides support beyond HTTP caching or managed CDNs. We present our protocol design along with a Linux-based implementation and some initial feasibility checks
    corecore