37,418 research outputs found

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com

    Optimal Regulation of Blood Glucose Level in Type I Diabetes using Insulin and Glucagon

    Full text link
    The Glucose-Insulin-Glucagon nonlinear model [1-4] accurately describes how the body responds to exogenously supplied insulin and glucagon in patients affected by Type I diabetes. Based on this model, we design infusion rates of either insulin (monotherapy) or insulin and glucagon (dual therapy) that can optimally maintain the blood glucose level within desired limits after consumption of a meal and prevent the onset of both hypoglycemia and hyperglycemia. This problem is formulated as a nonlinear optimal control problem, which we solve using the numerical optimal control package PSOPT. Interestingly, in the case of monotherapy, we find the optimal solution is close to the standard method of insulin based glucose regulation, which is to assume a variable amount of insulin half an hour before each meal. We also find that the optimal dual therapy (that uses both insulin and glucagon) is better able to regulate glucose as compared to using insulin alone. We also propose an ad-hoc rule for both the dosage and the time of delivery of insulin and glucagon.Comment: Accepted for publication in PLOS ON

    Optimizing spread dynamics on graphs by message passing

    Full text link
    Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the last decades, many efforts have been devoted to understand the typical behaviour of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception of models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).Comment: Replacement for "The Spread Optimization Problem

    Decentralized Observability with Limited Communication between Sensors

    Full text link
    In this paper, we study the problem of jointly retrieving the state of a dynamical system, as well as the state of the sensors deployed to estimate it. We assume that the sensors possess a simple computational unit that is capable of performing simple operations, such as retaining the current state and model of the system in its memory. We assume the system to be observable (given all the measurements of the sensors), and we ask whether each sub-collection of sensors can retrieve the state of the underlying physical system, as well as the state of the remaining sensors. To this end, we consider communication between neighboring sensors, whose adjacency is captured by a communication graph. We then propose a linear update strategy that encodes the sensor measurements as states in an augmented state space, with which we provide the solution to the problem of retrieving the system and sensor states. The present paper contains three main contributions. First, we provide necessary and sufficient conditions to ensure observability of the system and sensor states from any sensor. Second, we address the problem of adding communication between sensors when the necessary and sufficient conditions are not satisfied, and devise a strategy to this end. Third, we extend the former case to include different costs of communication between sensors. Finally, the concepts defined and the method proposed are used to assess the state of an example of approximate structural brain dynamics through linearized measurements.Comment: 15 pages, 5 figures, extended version of paper accepted at IEEE Conference on Decision and Control 201
    • …
    corecore