17,242 research outputs found

    BriskStream: Scaling Data Stream Processing on Shared-Memory Multicore Architectures

    Full text link
    We introduce BriskStream, an in-memory data stream processing system (DSPSs) specifically designed for modern shared-memory multicore architectures. BriskStream's key contribution is an execution plan optimization paradigm, namely RLAS, which takes relative-location (i.e., NUMA distance) of each pair of producer-consumer operators into consideration. We propose a branch and bound based approach with three heuristics to resolve the resulting nontrivial optimization problem. The experimental evaluations demonstrate that BriskStream yields much higher throughput and better scalability than existing DSPSs on multi-core architectures when processing different types of workloads.Comment: To appear in SIGMOD'1

    Reverse spatial visual top-k query

    Get PDF
    With the wide application of mobile Internet techniques an location-based services (LBS), massive multimedia data with geo-tags has been generated and collected. In this paper, we investigate a novel type of spatial query problem, named reverse spatial visual top- kk query (RSVQ k ) that aims to retrieve a set of geo-images that have the query as one of the most relevant geo-images in both geographical proximity and visual similarity. Existing approaches for reverse top- kk queries are not suitable to address this problem because they cannot effectively process unstructured data, such as image. To this end, firstly we propose the definition of RSVQ k problem and introduce the similarity measurement. A novel hybrid index, named VR 2 -Tree is designed, which is a combination of visual representation of geo-image and R-Tree. Besides, an extension of VR 2 -Tree, called CVR 2 -Tree is introduced and then we discuss the calculation of lower/upper bound, and then propose the optimization technique via CVR 2 -Tree for further pruning. In addition, a search algorithm named RSVQ k algorithm is developed to support the efficient RSVQ k query. Comprehensive experiments are conducted on four geo-image datasets, and the results illustrate that our approach can address the RSVQ k problem effectively and efficiently

    Robust Environmental Mapping by Mobile Sensor Networks

    Full text link
    Constructing a spatial map of environmental parameters is a crucial step to preventing hazardous chemical leakages, forest fires, or while estimating a spatially distributed physical quantities such as terrain elevation. Although prior methods can do such mapping tasks efficiently via dispatching a group of autonomous agents, they are unable to ensure satisfactory convergence to the underlying ground truth distribution in a decentralized manner when any of the agents fail. Since the types of agents utilized to perform such mapping are typically inexpensive and prone to failure, this results in poor overall mapping performance in real-world applications, which can in certain cases endanger human safety. This paper presents a Bayesian approach for robust spatial mapping of environmental parameters by deploying a group of mobile robots capable of ad-hoc communication equipped with short-range sensors in the presence of hardware failures. Our approach first utilizes a variant of the Voronoi diagram to partition the region to be mapped into disjoint regions that are each associated with at least one robot. These robots are then deployed in a decentralized manner to maximize the likelihood that at least one robot detects every target in their associated region despite a non-zero probability of failure. A suite of simulation results is presented to demonstrate the effectiveness and robustness of the proposed method when compared to existing techniques.Comment: accepted to icra 201

    Approximating n-player behavioural strategy nash equilibria using coevolution

    Get PDF
    Coevolutionary algorithms are plagued with a set of problems related to intransitivity that make it questionable what the end product of a coevolutionary run can achieve. With the introduction of solution concepts into coevolution, part of the issue was alleviated, however efficiently representing and achieving game theoretic solution concepts is still not a trivial task. In this paper we propose a coevolutionary algorithm that approximates behavioural strategy Nash equilibria in n-player zero sum games, by exploiting the minimax solution concept. In order to support our case we provide a set of experiments in both games of known and unknown equilibria. In the case of known equilibria, we can confirm our algorithm converges to the known solution, while in the case of unknown equilibria we can see a steady progress towards Nash. Copyright 2011 ACM

    Data Provenance and Management in Radio Astronomy: A Stream Computing Approach

    Get PDF
    New approaches for data provenance and data management (DPDM) are required for mega science projects like the Square Kilometer Array, characterized by extremely large data volume and intense data rates, therefore demanding innovative and highly efficient computational paradigms. In this context, we explore a stream-computing approach with the emphasis on the use of accelerators. In particular, we make use of a new generation of high performance stream-based parallelization middleware known as InfoSphere Streams. Its viability for managing and ensuring interoperability and integrity of signal processing data pipelines is demonstrated in radio astronomy. IBM InfoSphere Streams embraces the stream-computing paradigm. It is a shift from conventional data mining techniques (involving analysis of existing data from databases) towards real-time analytic processing. We discuss using InfoSphere Streams for effective DPDM in radio astronomy and propose a way in which InfoSphere Streams can be utilized for large antennae arrays. We present a case-study: the InfoSphere Streams implementation of an autocorrelating spectrometer, and using this example we discuss the advantages of the stream-computing approach and the utilization of hardware accelerators

    Dataplane Specialization for High-performance OpenFlow Software Switching

    Get PDF
    OpenFlow is an amazingly expressive dataplane program- ming language, but this expressiveness comes at a severe performance price as switches must do excessive packet clas- sification in the fast path. The prevalent OpenFlow software switch architecture is therefore built on flow caching, but this imposes intricate limitations on the workloads that can be supported efficiently and may even open the door to mali- cious cache overflow attacks. In this paper we argue that in- stead of enforcing the same universal flow cache semantics to all OpenFlow applications and optimize for the common case, a switch should rather automatically specialize its dat- aplane piecemeal with respect to the configured workload. We introduce ES WITCH , a novel switch architecture that uses on-the-fly template-based code generation to compile any OpenFlow pipeline into efficient machine code, which can then be readily used as fast path. We present a proof- of-concept prototype and we demonstrate on illustrative use cases that ES WITCH yields a simpler architecture, superior packet processing speed, improved latency and CPU scala- bility, and predictable performance. Our prototype can eas- ily scale beyond 100 Gbps on a single Intel blade even with complex OpenFlow pipelines

    An overview of Mirjam and WeaveC

    Get PDF
    In this chapter, we elaborate on the design of an industrial-strength aspectoriented programming language and weaver for large-scale software development. First, we present an analysis on the requirements of a general purpose aspect-oriented language that can handle crosscutting concerns in ASML software. We also outline a strategy on working with aspects in large-scale software development processes. In our design, we both re-use existing aspect-oriented language abstractions and propose new ones to address the issues that we identified in our analysis. The quality of the code ensured by the realized language and weaver has a positive impact both on maintenance effort and lead-time in the first line software development process. As evidence, we present a short evaluation of the language and weaver as applied today in the software development process of ASML
    corecore