13,205 research outputs found

    Subgradient Techniques for Passivity Enforcement of Linear Device and Interconnect Macromodels

    Get PDF
    This paper presents a class of nonsmooth convex optimization methods for the passivity enforcement of reduced-order macromodels of electrical interconnects, packages, and linear passive devices. Model passivity can be lost during model extraction or identification from numerical field solutions or direct measurements. Nonpassive models may cause instabilities in transient system-level simulation, therefore a suitable postprocessing is necessary in order to eliminate any passivity violations. Different from leading numerical schemes on the subject, passivity enforcement is formulated here as a direct frequency-domain calHinfty{{cal H}_infty} norm minimization through perturbation of the model state-space parameters. Since the dependence of this norm on the parameters is nonsmooth, but continuous and convex, we resort to the use of subdifferentials and subgradients, which are used to devise two different algorithms. We provide a theoretical proof of the global optimality for the solution computed via both schemes. Numerical results confirm that these algorithms achieve the global optimum in a finite number of iterations within a prescribed accuracy leve

    Generation of passive macromodels from transient port responses

    Get PDF
    Abstract: This paper presents a new technique for the generation of linear lumped macromodels from input-output port characterization. A complete set of transient port responses is processed by a new time-domain formulation of the well-known Vector Fitting algorithm. The data processing involves a combination of digital filtering and least squares fitting. Passivity of the obtained macromodel is enforced a posteriori by applying an iterative perturbation technique to the associated Hamiltonian matrix.

    High-Performance Passive Macromodeling Algorithms for Parallel Computing Platforms

    Get PDF
    This paper presents a comprehensive strategy for fast generation of passive macromodels of linear devices and interconnects on parallel computing hardware. Starting from a raw characterization of the structure in terms of frequency-domain tabulated scattering responses, we perform a rational curve fitting and a postprocessing passivity enforcement. Both algorithms are parallelized and cast in a form that is suitable for deployment on shared-memory multicore platforms. Particular emphasis is placed on the passivity characterization step, which is performed using two complementary strategies. The first uses an iterative restarted and deflated rational Arnoldi process to extract the imaginary Hamiltonian eigenvalues associated with the model. The second is based on an accuracy-controlled adaptive sampling. Various parallelization strategies are discussed for both schemes, with particular care on load balancing between different computing threads and memory occupation. The resulting parallel macromodeling flow is demonstrated on a number of medium- and large-scale structures, showing good scalability up to 16 computational core

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte

    A novel iterative method to approximate structured singular values

    Full text link
    A novel method for approximating structured singular values (also known as mu-values) is proposed and investigated. These quantities constitute an important tool in the stability analysis of uncertain linear control systems as well as in structured eigenvalue perturbation theory. Our approach consists of an inner-outer iteration. In the outer iteration, a Newton method is used to adjust the perturbation level. The inner iteration solves a gradient system associated with an optimization problem on the manifold induced by the structure. Numerical results and comparison with the well-known Matlab function mussv, implemented in the Matlab Control Toolbox, illustrate the behavior of the method
    • ā€¦
    corecore