28,629 research outputs found

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify, validate and analyse a prominent example of adaptive system: robot swarms equipped with self-assembly strategies. The analysis exploits the statistical model checker PVeStA

    Extending the Real-Time Maude Semantics of Ptolemy to Hierarchical DE Models

    Full text link
    This paper extends our Real-Time Maude formalization of the semantics of flat Ptolemy II discrete-event (DE) models to hierarchical models, including modal models. This is a challenging task that requires combining synchronous fixed-point computations with hierarchical structure. The synthesis of a Real-Time Maude verification model from a Ptolemy II DE model, and the formal verification of the synthesized model in Real-Time Maude, have been integrated into Ptolemy II, enabling a model-engineering process that combines the convenience of Ptolemy II DE modeling and simulation with formal verification in Real-Time Maude.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Modelling and Verification of Multiple UAV Mission Using SMV

    Full text link
    Model checking has been used to verify the correctness of digital circuits, security protocols, communication protocols, as they can be modelled by means of finite state transition model. However, modelling the behaviour of hybrid systems like UAVs in a Kripke model is challenging. This work is aimed at capturing the behaviour of an UAV performing cooperative search mission into a Kripke model, so as to verify it against the temporal properties expressed in Computation Tree Logic (CTL). SMV model checker is used for the purpose of model checking

    Conditionally Optimal Algorithms for Generalized B\"uchi Games

    Get PDF
    Games on graphs provide the appropriate framework to study several central problems in computer science, such as the verification and synthesis of reactive systems. One of the most basic objectives for games on graphs is the liveness (or B\"uchi) objective that given a target set of vertices requires that some vertex in the target set is visited infinitely often. We study generalized B\"uchi objectives (i.e., conjunction of liveness objectives), and implications between two generalized B\"uchi objectives (known as GR(1) objectives), that arise in numerous applications in computer-aided verification. We present improved algorithms and conditional super-linear lower bounds based on widely believed assumptions about the complexity of (A1) combinatorial Boolean matrix multiplication and (A2) CNF-SAT. We consider graph games with nn vertices, mm edges, and generalized B\"uchi objectives with kk conjunctions. First, we present an algorithm with running time O(kâ‹…n2)O(k \cdot n^2), improving the previously known O(kâ‹…nâ‹…m)O(k \cdot n \cdot m) and O(k2â‹…n2)O(k^2 \cdot n^2) worst-case bounds. Our algorithm is optimal for dense graphs under (A1). Second, we show that the basic algorithm for the problem is optimal for sparse graphs when the target sets have constant size under (A2). Finally, we consider GR(1) objectives, with k1k_1 conjunctions in the antecedent and k2k_2 conjunctions in the consequent, and present an O(k1â‹…k2â‹…n2.5)O(k_1 \cdot k_2 \cdot n^{2.5})-time algorithm, improving the previously known O(k1â‹…k2â‹…nâ‹…m)O(k_1 \cdot k_2 \cdot n \cdot m)-time algorithm for m>n1.5m > n^{1.5}
    • …
    corecore