1,916 research outputs found

    In good company? : Perception of movement synchrony of a non-anthropomorphic robot

    Get PDF
    Copyright: © 2015 Lehmann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Recent technological developments like cheap sensors and the decreasing costs of computational power have brought the possibility of robotic home companions within reach. In order to be accepted it is vital for these robots to be able to participate meaningfully in social interactions with their users and to make them feel comfortable during these interactions. In this study we investigated how people respond to a situation where a companion robot is watching its user. Specifically, we tested the effect of robotic behaviours that are synchronised with the actions of a human. We evaluated the effects of these behaviours on the robot’s likeability and perceived intelligence using an online video survey. The robot used was Care-O-botÂź3, a non-anthropomorphic robot with a limited range of expressive motions. We found that even minimal, positively synchronised movements during an object-oriented task were interpreted by participants as engagement and created a positive disposition towards the robot. However, even negatively synchronised movements of the robot led to more positive perceptions of the robot, as compared to a robot that does not move at all. The results emphasise a) the powerful role that robot movements in general can have on participants’ perception of the robot, and b) that synchronisation of body movements can be a powerful means to enhance the positive attitude towards a non-anthropomorphic robot.Peer reviewe

    Bio-inspired soft robotic systems: Exploiting environmental interactions using embodied mechanics and sensory coordination

    Get PDF
    Despite the widespread development of highly intelligent robotic systems exhibiting great precision, reliability, and dexterity, robots remain incapable of performing basic manipulation tasks that humans take for granted. Manipulation in unstructured environments continues to be acknowledged as a significant challenge. Soft robotics, the use of less rigid materials in robots, has been proposed as one means of addressing these limitations. The technique enables more compliant interactions with the environment, allowing for increasingly adaptive behaviours better suited to more human-centric applications. Embodied intelligence is a biologically inspired concept in which intelligence is a function of the entire system, not only the controller or `brain'. This thesis focuses on the use of embodied intelligence for the development of soft robots, with a particular focus on how it can aid both perception and adaptability. Two main hypotheses are raised: first, that the mechanical design and fabrication of soft-rigid hybrid robots can enable increasingly environmentally adaptive behaviours, and second, that sensing materials and morphology can provide intelligence that assists perception through embodiment. A number of approaches and frameworks for the design and development of embodied systems are presented that address these hypotheses. It is shown how embodiment in soft sensor morphology can be used to perform localised processing and thereby distribute the intelligence over the body of a system. Specifically in soft robots, sensor morphology utilises the directional deformations created by interactions with the environment to aid in perception. Building on and formalising these ideas, a number of morphology-based frameworks are proposed for detecting different stimuli. The multifaceted role of materials in soft robots is demonstrated through the development of materials capable of both sensing and changes in material property. Such materials provide additional functionality beyond their integral scaffolding and static mechanical characteristics. In particular, an integrated material has been created exhibiting both sensing capabilities and also variable stiffness and `tack’ force, thereby enabling complex single-point grasping. To maximise the intelligence that can be gained through embodiment, a design approach to soft robots, `soft-rigid hybrid' design is introduced. This approach exploits passive behaviours and body dynamics to provide environmentally adaptive behaviours and sensing. It is leveraged by multi-material 3D printing techniques and novel approaches and frameworks for designing mechanical structures. The findings in this thesis demonstrate that an embodied approach to soft robotics provides capabilities and behaviours that are not currently otherwise achievable. Utilising the concept of `embodiment' results in softer robots with an embodied intelligence that aids perception and adaptive behaviours, and has the potential to bring the physical abilities of robots one step closer to those of animals and humans.EPSR

    The perception of emotion in artificial agents

    Get PDF
    Given recent technological developments in robotics, artificial intelligence and virtual reality, it is perhaps unsurprising that the arrival of emotionally expressive and reactive artificial agents is imminent. However, if such agents are to become integrated into our social milieu, it is imperative to establish an understanding of whether and how humans perceive emotion in artificial agents. In this review, we incorporate recent findings from social robotics, virtual reality, psychology, and neuroscience to examine how people recognize and respond to emotions displayed by artificial agents. First, we review how people perceive emotions expressed by an artificial agent, such as facial and bodily expressions and vocal tone. Second, we evaluate the similarities and differences in the consequences of perceived emotions in artificial compared to human agents. Besides accurately recognizing the emotional state of an artificial agent, it is critical to understand how humans respond to those emotions. Does interacting with an angry robot induce the same responses in people as interacting with an angry person? Similarly, does watching a robot rejoice when it wins a game elicit similar feelings of elation in the human observer? Here we provide an overview of the current state of emotion expression and perception in social robotics, as well as a clear articulation of the challenges and guiding principles to be addressed as we move ever closer to truly emotional artificial agents

    Perceiving Sociable Technology: Exploring the Role of Anthropomorphism and Agency Perception on Human-Computer Interaction (HCI)

    Get PDF
    With the arrival of personal assistants and other AI-enabled autonomous technologies, social interactions with smart devices have become a part of our daily lives. Therefore, it becomes increasingly important to understand how these social interactions emerge, and why users appear to be influenced by them. For this reason, I explore questions on what the antecedents and consequences of this phenomenon, known as anthropomorphism, are as described in the extant literature from fields ranging from information systems to social neuroscience. I critically analyze those empirical studies directly measuring anthropomorphism and those referring to it without a corresponding measurement. Through a grounded theory approach, I identify common themes and use them to develop models for the antecedents and consequences of anthropomorphism. The results suggest anthropomorphism possesses both conscious and non-conscious components with varying implications. While conscious attributions are shown to vary based on individual differences, non-conscious attributions emerge whenever a technology exhibits apparent reasoning such as through non-verbal behavior like peer-to-peer mirroring or verbal paralinguistic and backchanneling cues. Anthropomorphism has been shown to affect users’ self-perceptions, perceptions of the technology, how users interact with the technology, and the users’ performance. Examples include changes in a users’ trust on the technology, conformity effects, bonding, and displays of empathy. I argue these effects emerge from changes in users’ perceived agency, and their self- and social- identity similarly to interactions between humans. Afterwards, I critically examine current theories on anthropomorphism and present propositions about its nature based on the results of the empirical literature. Subsequently, I introduce a two-factor model of anthropomorphism that proposes how an individual anthropomorphizes a technology is dependent on how the technology was initially perceived (top-down and rational or bottom-up and automatic), and whether it exhibits a capacity for agency or experience. I propose that where a technology lays along this spectrum determines how individuals relates to it, creating shared agency effects, or changing the users’ social identity. For this reason, anthropomorphism is a powerful tool that can be leveraged to support future interactions with smart technologies

    Sticky Hands

    Get PDF
    • 

    corecore