81,779 research outputs found

    Speech-Gesture Mapping and Engagement Evaluation in Human Robot Interaction

    Full text link
    A robot needs contextual awareness, effective speech production and complementing non-verbal gestures for successful communication in society. In this paper, we present our end-to-end system that tries to enhance the effectiveness of non-verbal gestures. For achieving this, we identified prominently used gestures in performances by TED speakers and mapped them to their corresponding speech context and modulated speech based upon the attention of the listener. The proposed method utilized Convolutional Pose Machine [4] to detect the human gesture. Dominant gestures of TED speakers were used for learning the gesture-to-speech mapping. The speeches by them were used for training the model. We also evaluated the engagement of the robot with people by conducting a social survey. The effectiveness of the performance was monitored by the robot and it self-improvised its speech pattern on the basis of the attention level of the audience, which was calculated using visual feedback from the camera. The effectiveness of interaction as well as the decisions made during improvisation was further evaluated based on the head-pose detection and interaction survey.Comment: 8 pages, 9 figures, Under review in IRC 201

    KINECTWheels: wheelchair-accessible motion-based game interaction

    Get PDF
    The increasing popularity of full-body motion-based video games creates new challenges for game accessibility research. Many games strongly focus on able-bodied persons and require players to move around freely. To address this problem, we introduce KINECTWheels, a toolkit that facilitates the integration of wheelchair-based game input. Our library can help game designers to integrate wheelchair input at the development stage, and it can be configured to trigger keystroke events to make off-the-shelf PC games wheelchair-accessible

    Recognizing complex gestures via natural interfaces

    Get PDF
    Natural interfaces have revolutionized the way we interact with computers. They have provided in many fields a comfortable and efficient mechanism that requires no computer knowledge, nor artificial controlling devices, but allow as to interoperate via natural gestures. Diverse fields such as entertainment, remote control, medicine, fitness exercise are finding improvements with the introduction of this technology. However, most of these sensorial interfaces only provide support for basic gestures. In this work we show how it is possible to construct your own complex gestures using the underlying capabilities of these sensor devices.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    RGB-D datasets using microsoft kinect or similar sensors: a survey

    Get PDF
    RGB-D data has turned out to be a very useful representation of an indoor scene for solving fundamental computer vision problems. It takes the advantages of the color image that provides appearance information of an object and also the depth image that is immune to the variations in color, illumination, rotation angle and scale. With the invention of the low-cost Microsoft Kinect sensor, which was initially used for gaming and later became a popular device for computer vision, high quality RGB-D data can be acquired easily. In recent years, more and more RGB-D image/video datasets dedicated to various applications have become available, which are of great importance to benchmark the state-of-the-art. In this paper, we systematically survey popular RGB-D datasets for different applications including object recognition, scene classification, hand gesture recognition, 3D-simultaneous localization and mapping, and pose estimation. We provide the insights into the characteristics of each important dataset, and compare the popularity and the difficulty of those datasets. Overall, the main goal of this survey is to give a comprehensive description about the available RGB-D datasets and thus to guide researchers in the selection of suitable datasets for evaluating their algorithms

    Conducting a virtual ensemble with a kinect device

    Get PDF
    This paper presents a gesture-based interaction technique for the implementation of an orchestra conductor and a virtual ensemble, using a 3D camera-based sensor to capture user’s gestures. In particular, a human-computer interface has been developed to recognize conducting gestures using a Microsoft Kinect device. The system allows the conductor to control both the tempo in the piece played as well as the dynamics of each instrument set independently. In order to modify the tempo in the playback, a time-frequency processing-based algorithmis used. Finally, an experiment was conducted to assess user’s opinion of the system as well as experimentally confirm if the features in the system were effectively improving user experience or not.This work has been funded by the Ministerio de Economia y Competitividad of the Spanish Government under Project No. TIN2010-21089-C03-02 and Project No. IPT-2011-0885-430000 and by the Junta de Andalucia under Project No. P11-TIC-7154. The work has been done at Universidad de Malaga. Campus de Excelencia Internacional Andalucia Tech

    Interactive form creation: exploring the creation and manipulation of free form through the use of interactive multiple input interface

    Get PDF
    Most current CAD systems support only the two most common input devices: a mouse and a keyboard that impose a limit to the degree of interaction that a user can have with the system. However, it is not uncommon for users to work together on the same computer during a collaborative task. Beside that, people tend to use both hands to manipulate 3D objects; one hand is used to orient the object while the other hand is used to perform some operation on the object. The same things could be applied to computer modelling in the conceptual phase of the design process. A designer can rotate and position an object with one hand, and manipulate the shape [deform it] with the other hand. Accordingly, the 3D object can be easily and intuitively changed through interactive manipulation of both hands.The research investigates the manipulation and creation of free form geometries through the use of interactive interfaces with multiple input devices. First the creation of the 3D model will be discussed; several different types of models will be illustrated. Furthermore, different tools that allow the user to control the 3D model interactively will be presented. Three experiments were conducted using different interactive interfaces; two bi-manual techniques were compared with the conventional one-handed approach. Finally it will be demonstrated that the use of new and multiple input devices can offer many opportunities for form creation. The problem is that few, if any, systems make it easy for the user or the programmer to use new input devices
    • …
    corecore