1,414 research outputs found

    HYBRIDJOIN for near-real-time Data Warehousing

    Get PDF
    An important component of near-real-time data warehouses is the near-real-time integration layer. One important element in near-real-time data integration is the join of a continuous input data stream with a diskbased relation. For high-throughput streams, stream-based algorithms, such as Mesh Join (MESHJOIN), can be used. However, in MESHJOIN the performance of the algorithm is inversely proportional to the size of disk-based relation. The Index Nested Loop Join (INLJ) can be set up so that it processes stream input, and can deal with intermittences in the update stream but it has low throughput. This paper introduces a robust stream-based join algorithm called Hybrid Join (HYBRIDJOIN), which combines the two approaches. A theoretical result shows that HYBRIDJOIN is asymptotically as fast as the fastest of both algorithms. The authors present performance measurements of the implementation. In experiments using synthetic data based on a Zipfian distribution, HYBRIDJOIN performs significantly better for typical parameters of the Zipfian distribution, and in general performs in accordance with the theoretical model while the other two algorithms are unacceptably slow under different settings

    Pragmatic development of service based real-time change data capture

    Get PDF
    This thesis makes a contribution to the Change Data Capture (CDC) field by providing an empirical evaluation on the performance of CDC architectures in the context of realtime data warehousing. CDC is a mechanism for providing data warehouse architectures with fresh data from Online Transaction Processing (OLTP) databases. There are two types of CDC architectures, pull architectures and push architectures. There is exiguous data on the performance of CDC architectures in a real-time environment. Performance data is required to determine the real-time viability of the two architectures. We propose that push CDC architectures are optimal for real-time CDC. However, push CDC architectures are seldom implemented because they are highly intrusive towards existing systems and arduous to maintain. As part of our contribution, we pragmatically develop a service based push CDC solution, which addresses the issues of intrusiveness and maintainability. Our solution uses Data Access Services (DAS) to decouple CDC logic from the applications. A requirement for the DAS is to place minimal overhead on a transaction in an OLTP environment. We synthesize DAS literature and pragmatically develop DAS that eciently execute transactions in an OLTP environment. Essentially we develop effeicient RESTful DAS, which expose Transactions As A Resource (TAAR). We evaluate the TAAR solution and three pull CDC mechanisms in a real-time environment, using the industry recognised TPC-C benchmark. The optimal CDC mechanism in a real-time environment, will capture change data with minimal latency and will have a negligible affect on the database's transactional throughput. Capture latency is the time it takes a CDC mechanism to capture a data change that has been applied to an OLTP database. A standard definition for capture latency and how to measure it does not exist in the field. We create this definition and extend the TPC-C benchmark to make the capture latency measurement. The results from our evaluation show that pull CDC is capable of real-time CDC at low levels of user concurrency. However, as the level of user concurrency scales upwards, pull CDC has a significant impact on the database's transaction rate, which affirms the theory that pull CDC architectures are not viable in a real-time architecture. TAAR CDC on the other hand is capable of real-time CDC, and places a minimal overhead on the transaction rate, although this performance is at the expense of CPU resources

    Model-Based Time Series Management at Scale

    Get PDF

    Time Series Management Systems:A Survey

    Get PDF
    The collection of time series data increases as more monitoring and automation are being deployed. These deployments range in scale from an Internet of things (IoT) device located in a household to enormous distributed Cyber-Physical Systems (CPSs) producing large volumes of data at high velocity. To store and analyze these vast amounts of data, specialized Time Series Management Systems (TSMSs) have been developed to overcome the limitations of general purpose Database Management Systems (DBMSs) for times series management. In this paper, we present a thorough analysis and classification of TSMSs developed through academic or industrial research and documented through publications. Our classification is organized into categories based on the architectures observed during our analysis. In addition, we provide an overview of each system with a focus on the motivational use case that drove the development of the system, the functionality for storage and querying of time series a system implements, the components the system is composed of, and the capabilities of each system with regard to Stream Processing and Approximate Query Processing (AQP). Last, we provide a summary of research directions proposed by other researchers in the field and present our vision for a next generation TSMS.Comment: 20 Pages, 15 Figures, 2 Tables, Accepted for publication in IEEE TKD

    Dynamic re-optimization techniques for stream processing engines and object stores

    Get PDF
    Large scale data storage and processing systems are strongly motivated by the need to store and analyze massive datasets. The complexity of a large class of these systems is rooted in their distributed nature, extreme scale, need for real-time response, and streaming nature. The use of these systems on multi-tenant, cloud environments with potential resource interference necessitates fine-grained monitoring and control. In this dissertation, we present efficient, dynamic techniques for re-optimizing stream-processing systems and transactional object-storage systems.^ In the context of stream-processing systems, we present VAYU, a per-topology controller. VAYU uses novel methods and protocols for dynamic, network-aware tuple-routing in the dataflow. We show that the feedback-driven controller in VAYU helps achieve high pipeline throughput over long execution periods, as it dynamically detects and diagnoses any pipeline-bottlenecks. We present novel heuristics to optimize overlays for group communication operations in the streaming model.^ In the context of object-storage systems, we present M-Lock, a novel lock-localization service for distributed transaction protocols on scale-out object stores to increase transaction throughput. Lock localization refers to dynamic migration and partitioning of locks across nodes in the scale-out store to reduce cross-partition acquisition of locks. The service leverages the observed object-access patterns to achieve lock-clustering and deliver high performance. We also present TransMR, a framework that uses distributed, transactional object stores to orchestrate and execute asynchronous components in amorphous data-parallel applications on scale-out architectures

    Pragmatic development of service based real-time change data capture

    Get PDF
    This thesis makes a contribution to the Change Data Capture (CDC) field by providing an empirical evaluation on the performance of CDC architectures in the context of realtime data warehousing. CDC is a mechanism for providing data warehouse architectures with fresh data from Online Transaction Processing (OLTP) databases. There are two types of CDC architectures, pull architectures and push architectures. There is exiguous data on the performance of CDC architectures in a real-time environment. Performance data is required to determine the real-time viability of the two architectures. We propose that push CDC architectures are optimal for real-time CDC. However, push CDC architectures are seldom implemented because they are highly intrusive towards existing systems and arduous to maintain. As part of our contribution, we pragmatically develop a service based push CDC solution, which addresses the issues of intrusiveness and maintainability. Our solution uses Data Access Services (DAS) to decouple CDC logic from the applications. A requirement for the DAS is to place minimal overhead on a transaction in an OLTP environment. We synthesize DAS literature and pragmatically develop DAS that eciently execute transactions in an OLTP environment. Essentially we develop effeicient RESTful DAS, which expose Transactions As A Resource (TAAR). We evaluate the TAAR solution and three pull CDC mechanisms in a real-time environment, using the industry recognised TPC-C benchmark. The optimal CDC mechanism in a real-time environment, will capture change data with minimal latency and will have a negligible affect on the database's transactional throughput. Capture latency is the time it takes a CDC mechanism to capture a data change that has been applied to an OLTP database. A standard definition for capture latency and how to measure it does not exist in the field. We create this definition and extend the TPC-C benchmark to make the capture latency measurement. The results from our evaluation show that pull CDC is capable of real-time CDC at low levels of user concurrency. However, as the level of user concurrency scales upwards, pull CDC has a significant impact on the database's transaction rate, which affirms the theory that pull CDC architectures are not viable in a real-time architecture. TAAR CDC on the other hand is capable of real-time CDC, and places a minimal overhead on the transaction rate, although this performance is at the expense of CPU resources.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore