48 research outputs found

    Coalgebraic analysis of probabilistic systems

    Get PDF

    Coalgebraic Automata Theory: Basic Results

    Get PDF
    We generalize some of the central results in automata theory to the abstraction level of coalgebras and thus lay out the foundations of a universal theory of automata operating on infinite objects. Let F be any set functor that preserves weak pullbacks. We show that the class of recognizable languages of F-coalgebras is closed under taking unions, intersections, and projections. We also prove that if a nondeterministic F-automaton accepts some coalgebra it accepts a finite one of the size of the automaton. Our main technical result concerns an explicit construction which transforms a given alternating F-automaton into an equivalent nondeterministic one, whose size is exponentially bound by the size of the original automaton.Comment: 43 page

    A Categorical Framework for Learning Generalised Tree Automata

    Get PDF
    Automata learning is a popular technique used to automatically construct an automaton model from queries. Much research went into devising ad hoc adaptations of algorithms for different types of automata. The CALF project seeks to unify these using category theory in order to ease correctness proofs and guide the design of new algorithms. In this paper, we extend CALF to cover learning of algebraic structures that may not have a coalgebraic presentation. Furthermore, we provide a detailed algorithmic account of an abstract version of the popular L* algorithm, which was missing from CALF. We instantiate the abstract theory to a large class of Set functors, by which we recover for the first time practical tree automata learning algorithms from an abstract framework and at the same time obtain new algorithms to learn algebras of quotiented polynomial functors

    CALF: Categorical Automata Learning Framework

    Get PDF
    Automata learning is a popular technique used to automatically construct an automaton model from queries, and much research has gone into devising specific adaptations of such algorithms for different types of automata. This thesis presents a unifying approach to many existing algorithms using category theory, which eases correctness proofs and guides the design of new automata learning algorithms. We provide a categorical automata learning framework---CALF---that at its core includes an abstract version of the popular L* algorithm. Using this abstract algorithm we derive several concrete ones. We instantiate the framework to a large class of Set functors, by which we recover for the first time a tree automata learning algorithm from an abstract framework, which moreover is the first to cover also algebras of quotiented polynomial functors. We further develop a general algorithm to learn weighted automata over a semiring. On the one hand, we identify a class of semirings, principal ideal domains, for which this algorithm terminates and for which no learning algorithm previously existed; on the other hand, we show that it does not terminate over the natural numbers. Finally, we develop an algorithm to learn automata with side-effects determined by a monad and provide several optimisations, as well as an implementation with experimental evaluation. This allows us to improve existing algorithms and opens the door to learning a wide range of automata
    corecore