1,055 research outputs found

    EmoLabel: Semi-Automatic Methodology for Emotion Annotation of Social Media Text

    Get PDF
    The exponential growth of the amount of subjective information on the Web 2.0. has caused an increasing interest from researchers willing to develop methods to extract emotion data from these new sources. One of the most important challenges in textual emotion detection is the gathering of data with emotion labels because of the subjectivity of assigning these labels. Basing on this rationale, the main objective of our research is to contribute to the resolution of this important challenge. This is tackled by proposing EmoLabel: a semi-automatic methodology based on pre-annotation, which consists of two main phases: (1) an automatic process to pre-annotate the unlabelled English sentences; and (2) a manual process of refinement where human annotators determine which is the dominant emotion. Our objective is to assess the influence of this automatic pre-annotation method on manual emotion annotation from two points of view: agreement and time needed for annotation. The evaluation performed demonstrates the benefits of pre-annotation processes since the results on annotation time show a gain of near 20% when the pre-annotation process is applied (Pre-ML) without reducing annotator performance. Moreover, the benefits of pre-annotation are higher in those contributors whose performance is low (inaccurate annotators).This research has been supported by the Spanish Government (ref. RTI2018-094653-B-C22) and the Valencian Government (grant no. PROMETEU/2018/089). It has also been funded by the FPI grant (BES-2013-065950) and the research stay grant (EEBB-I-17-12578) from the Spanish Ministry of Science and Innovation

    Investigating and extending the methods in automated opinion analysis through improvements in phrase based analysis

    Get PDF
    Opinion analysis is an area of research which deals with the computational treatment of opinion statement and subjectivity in textual data. Opinion analysis has emerged over the past couple of decades as an active area of research, as it provides solutions to the issues raised by information overload. The problem of information overload has emerged with the advancements in communication technologies which gave rise to an exponential growth in user generated subjective data available online. Opinion analysis has a rich set of applications which are used to enable opportunities for organisations such as tracking user opinions about products, social issues in communities through to engagement in political participation etc.The opinion analysis area shows hyperactivity in recent years and research at different levels of granularity has, and is being undertaken. However it is observed that there are limitations in the state-of-the-art, especially as dealing with the level of granularities on their own does not solve current research issues. Therefore a novel sentence level opinion analysis approach utilising clause and phrase level analysis is proposed. This approach uses linguistic and syntactic analysis of sentences to understand the interdependence of words within sentences, and further uses rule based analysis for phrase level analysis to calculate the opinion at each hierarchical structure of a sentence. The proposed opinion analysis approach requires lexical and contextual resources for implementation. In the context of this Thesis the approach is further presented as part of an extended unifying framework for opinion analysis resulting in the design and construction of a novel corpus. The above contributions to the field (approach, framework and corpus) are evaluated within the Thesis and are found to make improvements on existing limitations in the field, particularly with regards to opinion analysis automation. Further work is required in integrating a mechanism for greater word sense disambiguation and in lexical resource development

    Doctor of Philosophy in Computer Science

    Get PDF
    dissertationOver the last decade, social media has emerged as a revolutionary platform for informal communication and social interactions among people. Publicly expressing thoughts, opinions, and feelings is one of the key characteristics of social media. In this dissertation, I present research on automatically acquiring knowledge from social media that can be used to recognize people's affective state (i.e., what someone feels at a given time) in text. This research addresses two types of affective knowledge: 1) hashtag indicators of emotion consisting of emotion hashtags and emotion hashtag patterns, and 2) affective understanding of similes (a form of figurative comparison). My research introduces a bootstrapped learning algorithm for learning hashtag in- dicators of emotions from tweets with respect to five emotion categories: Affection, Anger/Rage, Fear/Anxiety, Joy, and Sadness/Disappointment. With a few seed emotion hashtags per emotion category, the bootstrapping algorithm iteratively learns new hashtags and more generalized hashtag patterns by analyzing emotion in tweets that contain these indicators. Emotion phrases are also harvested from the learned indicators to train additional classifiers that use the surrounding word context of the phrases as features. This is the first work to learn hashtag indicators of emotions. My research also presents a supervised classification method for classifying affective polarity of similes in Twitter. Using lexical, semantic, and sentiment properties of different simile components as features, supervised classifiers are trained to classify a simile into a positive or negative affective polarity class. The property of comparison is also fundamental to the affective understanding of similes. My research introduces a novel framework for inferring implicit properties that 1) uses syntactic constructions, statistical association, dictionary definitions and word embedding vector similarity to generate and rank candidate properties, 2) re-ranks the top properties using influence from multiple simile components, and 3) aggregates the ranks of each property from different methods to create a final ranked list of properties. The inferred properties are used to derive additional features for the supervised classifiers to further improve affective polarity recognition. Experimental results show substantial improvements in affective understanding of similes over the use of existing sentiment resources

    Noise or music? Investigating the usefulness of normalisation for robust sentiment analysis on social media data

    Get PDF
    In the past decade, sentiment analysis research has thrived, especially on social media. While this data genre is suitable to extract opinions and sentiment, it is known to be noisy. Complex normalisation methods have been developed to transform noisy text into its standard form, but their effect on tasks like sentiment analysis remains underinvestigated. Sentiment analysis approaches mostly include spell checking or rule-based normalisation as preprocess- ing and rarely investigate its impact on the task performance. We present an optimised sentiment classifier and investigate to what extent its performance can be enhanced by integrating SMT-based normalisation as preprocessing. Experiments on a test set comprising a variety of user-generated content genres revealed that normalisation improves sentiment classification performance on tweets and blog posts, showing the model’s ability to generalise to other data genres
    • …
    corecore