279,442 research outputs found

    Reviewing effectivity in security approaches towards strengthening internet architecture

    Get PDF
    The usage of existing Internet architecture is shrouded by various security loopholes and hence is highly ineffective towards resisting potential threats over internet. Hence, it is claimed that future internet architecture has been evolved as a solution to address this security gaps of existing internet architecture. Therefore, this paper initiates its discussion by reviewing the existing practices of web security in conventional internet architecture and has also discussed about some recent solutions towards mitigating potentially reported threats e.g. cross-site scripting, SQL inject, and distributed denial-of-service. The paper has also discussed some of the recent research contribution towards security solution considering future internet architecture. The proposed manuscripts contributes to showcase the true effectiveness of existing approaches with respect to advantages and limitation of existing approaches along with explicit highlights of existing research problems that requires immediate attention

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    FedRR: a federated resource reservation algorithm for multimedia services

    Get PDF
    The Internet is rapidly evolving towards a multimedia service delivery platform. However, existing Internet-based content delivery approaches have several disadvantages, such as the lack of Quality of Service (QoS) guarantees. Future Internet research has presented several promising ideas to solve the issues related to the current Internet, such as federations across network domains and end-to-end QoS reservations. This paper presents an architecture for the delivery of multimedia content across the Internet, based on these novel principles. It facilitates the collaboration between the stakeholders involved in the content delivery process, allowing them to set up loosely-coupled federations. More specifically, the Federated Resource Reservation (FedRR) algorithm is proposed. It identifies suitable federation partners, selects end-to-end paths between content providers and their customers, and optimally configures intermediary network and infrastructure resources in order to satisfy the requested QoS requirements and minimize delivery costs

    Tiered Based Addressing in Internetwork Routing Protocols for the Future Internet

    Get PDF
    The current Internet has exhibited a remarkable sustenance to evolution and growth; however, it is facing unprecedented challenges and may not be able to continue to sustain this evolution and growth in the future because it is based on design decisions made in the 1970s when the TCP/IP concepts were developed. The research thus has provided incremental solutions to the evolving Internet to address every new vulnerabilities. As a result, the Internet has increased in complexity, which makes it hard to manage, more vulnerable to emerging threats, and more fragile in the face of new requirements. With a goal towards overcoming this situation, a clean-slate future Internet architecture design paradigm has been suggested by the research communities. This research is focused on addressing and routing for a clean-slate future Internet architecture, called the Floating Cloud Tiered (FCT) internetworking model. The major goals of this study are: (i) to address the two related problems of routing scalability and addressing, through an approach which would leverage the existing structures in the current Internet architecture, (ii) to propose a solution that is acceptable to the ISP community that supports the Internet, and lastly (iii) to provide a transition platform and mechanism which is very essential to the successful deployment of the proposed design

    Editorial

    Get PDF
    The metaverse has been described as the third Internet revolution, a virtual society and social network that mirrors real scenarios through a decentralized architecture. It is a new future form of the Internet that integrates various new technologies, and its combination with the education field has great potential. In the post-epidemic era, the shape of education has undergone significant changes, evolving continuously towards large-scale, digital, virtualized and intelligent

    Towards Scalable MANETs

    Get PDF
    International audienceIn the near-future, self-organized networking is expected to become an important component in ITS, and in the Internet architecture in general. An essential challenge concerning the integration of this new component is the accomplishment of scalable and efficient mobile ad hoc routing. This paper overviews considerations relative to the design of such MANET protocols inside the framework provided by the IETF, stating the need for new hybrid protocols and architecture which offer a gradual transition from "traditional" MANET routing towards scalable MANET routing integrated in the Internet. This paper also proposes a tentative solution in this domain: DHT-OLSR, based on OLSR enhanced with dynamic clustering and distributed hash table routing

    Context-aware Dynamic Discovery and Configuration of 'Things' in Smart Environments

    Full text link
    The Internet of Things (IoT) is a dynamic global information network consisting of Internet-connected objects, such as RFIDs, sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future Internet. Currently, such Internet-connected objects or `things' outnumber both people and computers connected to the Internet and their population is expected to grow to 50 billion in the next 5 to 10 years. To be able to develop IoT applications, such `things' must become dynamically integrated into emerging information networks supported by architecturally scalable and economically feasible Internet service delivery models, such as cloud computing. Achieving such integration through discovery and configuration of `things' is a challenging task. Towards this end, we propose a Context-Aware Dynamic Discovery of {Things} (CADDOT) model. We have developed a tool SmartLink, that is capable of discovering sensors deployed in a particular location despite their heterogeneity. SmartLink helps to establish the direct communication between sensor hardware and cloud-based IoT middleware platforms. We address the challenge of heterogeneity using a plug in architecture. Our prototype tool is developed on an Android platform. Further, we employ the Global Sensor Network (GSN) as the IoT middleware for the proof of concept validation. The significance of the proposed solution is validated using a test-bed that comprises 52 Arduino-based Libelium sensors.Comment: Big Data and Internet of Things: A Roadmap for Smart Environments, Studies in Computational Intelligence book series, Springer Berlin Heidelberg, 201

    MOSDEN: An Internet of Things Middleware for Resource Constrained Mobile Devices

    Get PDF
    The Internet of Things (IoT) is part of Future Internet and will comprise many billions of Internet Connected Objects (ICO) or `things' where things can sense, communicate, compute and potentially actuate as well as have intelligence, multi-modal interfaces, physical/ virtual identities and attributes. Collecting data from these objects is an important task as it allows software systems to understand the environment better. Many different hardware devices may involve in the process of collecting and uploading sensor data to the cloud where complex processing can occur. Further, we cannot expect all these objects to be connected to the computers due to technical and economical reasons. Therefore, we should be able to utilize resource constrained devices to collect data from these ICOs. On the other hand, it is critical to process the collected sensor data before sending them to the cloud to make sure the sustainability of the infrastructure due to energy constraints. This requires to move the sensor data processing tasks towards the resource constrained computational devices (e.g. mobile phones). In this paper, we propose Mobile Sensor Data Processing Engine (MOSDEN), an plug-in-based IoT middleware for mobile devices, that allows to collect and process sensor data without programming efforts. Our architecture also supports sensing as a service model. We present the results of the evaluations that demonstrate its suitability towards real world deployments. Our proposed middleware is built on Android platform
    • …
    corecore