21,078 research outputs found

    Transition UGent: a bottom-up initiative towards a more sustainable university

    Get PDF
    The vibrant think-tank ‘Transition UGent’ engaged over 250 academics, students and people from the university management in suggesting objectives and actions for the Sustainability Policy of Ghent University (Belgium). Founded in 2012, this bottom-up initiative succeeded to place sustainability high on the policy agenda of our university. Through discussions within 9 working groups and using the transition management method, Transition UGent developed system analyses, sustainability visions and transition paths on 9 fields of Ghent University: mobility, energy, food, waste, nature and green, water, art, education and research. At the moment, many visions and ideas find their way into concrete actions and policies. In our presentation we focused on the broad participative process, on the most remarkable structural results (e.g. a formal and ambitious Sustainability Vision and a student-led Sustainability Office) and on recent actions and experiments (e.g. a sustainability assessment on food supply in student restaurants, artistic COP21 activities, ambitious mobility plans, food leftovers projects, an education network on sustainability controversies, a transdisciplinary platform on Sustainable Cities). We concluded with some recommendations and reflections on this transition approach, on the important role of ‘policy entrepreneurs’ and student involvement, on lock-ins and bottlenecks, and on convincing skeptical leaders

    Problem-based learning spanning real and virtual words: a case study in Second Life

    Get PDF
    There is a growing use of immersive virtual environments for educational purposes. However, much of this activity is not yet documented in the public domain, or is descriptive rather than analytical. This paper presents a case study in which university students were tasked with building an interactive learning experience using Second Life as a platform. Both problem‐based learning and constructionism acted as framing pedagogies for the task, with students working in teams to design and build a learning experience which could potentially meet the needs of a real client in innovative ways which might not be possible in real life. A process account of the experience is provided, which examines how the pedagogies and contexts (real and virtual) influence and enhance each other. The use of a virtual environment, combined with problem‐based learning and constructionism, subtly changed the nature of the instructor–student relationship, allowed students to explore ‘problematic problems’ in a motivating and relevant manner, provided students with greater ownership over their work, and allowed problems to be set which were flexible, but at the same time allowed for ease of assessment

    Information Edge: Learning Commons Issue, Vol. 16, No. 2

    Get PDF

    Teaching Construction in the Virtual University: the WINDS project

    No full text
    This paper introduces some of the Information Technology solutions adopted in Web based INtelligent Design Support (WINDS) to support education in A/E/C design. The WINDS project WINDS is an EC-funded project in the 5th Framework, Information Society Technologies programme, Flexible University key action. WINDS is divided into two actions: ·The research technology action is going to implement a learning environment integrating an intelligent tutoring system, a computer instruction management system and a set of co-operative supporting tools. ·The development action is going to build a large knowledge base supporting Architecture and Civil Engineering Design Courses and to experiment a comprehensive Virtual School of Architecture and Engineering Design. During the third year of the project, more than 400 students all over Europe will attend the Virtual School. During the next three years the WINDS project will span a total effort of about 150 man-years from 28 partners of 10 European countries. The missions of the WINDS project are: Advanced Methodologies in Design Education. WINDS drives a breakdown with conventional models in design education, i.e. classroom or distance education. WINDS implements a problem oriented knowledge transfer methodology following Roger Schank's Goal Based Scenario (GBS) pedagogical methodology. GBS encourages the learning of both skills and cases, and fosters creative problem solving. Multidisciplinary Design Education. Design requires creative synthesis and open-end problem definition at the intersection of several disciplines. WINDS experiments a valuable integration of multidisciplinary design knowledge and expertise to produce a high level standard of education. Innovative Representation, Delivery and Access to Construction Education. WINDS delivers individual education customisation by allowing the learner access through the Internet to a wide range of on-line courses and structured learning objects by means of personally tailored learning strategies. WINDS promotes the 3W paradigm: learn What you need, Where you want, When you require. Construction Practice. Construction industry is a repository of ""best practices"" and knowledge that the WINDS will profit. WINDS system benefits the ISO10303 and IFC standards to acquire knowledge of the construction process directly in digital format. On the other hand, WINDS reengineers the knowledge in up-to-date courses, educational services, which the industries can use to provide just-in-time rather than in-advance learning. WINDS IT Solutions The missions of the WINDS project state many challenging requirements both in knowledge and system architecture. Many of the solutions adopted in these fields are innovative; others are evolution of existing technologies. This paper focuses on the integration of this set of state-of-the-art technologies in an advanced and functionally sound Computer Aided Instruction system for A/E/C Design. In particular the paper deals with the following aspects: Standard Learning Technology Architecture The WINDS system relies on the in progress IEEE 1484.1 Learning Technology Standard Architecture. According to this standard the system consists of two data stores, the Knowledge Library and the Record Database, and four process: System Coach, Delivery, Evaluation and the Learner. WINDS implements the Knowledge Library into a three-tier architecture: 1.Learning Objects: ·Learning Units are collections of text and multimedia data. ·Models are represented in either IFC or STEP formats. ·Cases are sets of Learning Units and Models. Cases are noteworthy stories, which describes solutions, integrate technical detail, contain relevant design failures etc. 2.Indexes refer to the process in which the identification of relevant topics in design cases and learning units takes place. Indexing process creates structures of Learning Objects for course management, profile planning procedures and reasoning processes. 3.Courses are taxonomies of either Learning Units or a design task and Course Units. Knowledge Representation WINDS demonstrates that it is possible and valuable to integrate a widespread design expertise so that it can be effectively used to produce a high level standard of education. To this aim WINDS gathers area knowledge, design skills and expertise under the umbrellas of common knowledge representation structures and unambiguous semantics. Cases are one of the most valuable means for the representation of design expertise. A Case is a set of Learning Units and Product Models. Cases are noteworthy stories, which describe solutions, integrate technical details, contain relevant design failures, etc. Knowledge Integration Indexes are a medium among different kind of knowledge: they implement networks for navigation and access to disparate documents: HTML, video, images, CAD and product models (STEP or IFC). Concept indexes link learning topics to learning objects and group them into competencies. Index relationships are the base of the WINDS reasoning processes, and provide the foundation for system coaching functions, which proactively suggest strategies, solutions, examples and avoids students' design deadlock. Knowledge Distribution To support the data stores and the process among the partners in 10 countries efficiently, WINDS implements an object oriented client/server as COM objects. Behind the DCOM components there is the Dynamic Kernel, which dynamically embodies and maintains data stores and process. Components of the Knowledge Library can reside on several servers across the Internet. This provides for distributed transactions, e.g. a change in one Learning Object affects the Knowledge Library spread across several servers in different countries. Learning objects implemented as COM objects can wrap ownership data. Clear and univocal definition of ownerships rights enables Universities, in collaboration with telecommunication and publisher companies, to act as "education brokers". Brokerage in education and training is an innovative paradigm to provide just-in-time and personally customised value added learning knowledg

    Digital Dissemination Platform of Transportation Engineering Education Materials Founded in Adoption Research

    Get PDF
    INE/AUTC 14.0

    Learning in Social Networks: Rationale and Ideas for Its Implementation in Higher Education

    Get PDF
    The internet has fast become a prevalent medium for collaboration between people and social networks, in particular, have gained vast popularity and relevance over the past few years. Within this framework, our paper will analyse the role played by social networks in current teaching practices. Specifically, we focus on the principles guiding the design of study activities which use social networks and we relate concrete experiences that show how they contribute to improving teaching and learning within a university environment

    Developing the vision: preparing teachers to deliver a digital world-class education system

    Get PDF
    In 2008 Australians were promised a \u27Digital Education Revolution\u27 by the government to dramatically change classroom education and build a \u27world-class education system\u27. Eight billion dollars have been spent providing computer equipment for upper secondary classrooms, yet there is little evidence that a revolution has occurred in Australian schools. Transformation of an education system takes more than a simplistic hardware solution. Revolutions need leaders and leaders need vision. In this paper, I argue that we must first develop educational leaders by inspiring future teachers with a vision and by designing our teacher-education courses as technology-rich learning-spaces. A multi-layered scenario is developed as the inspiration for a vision of a future-orientated teacher-education system that prepares teachers to deliver a \u27worldclass digital education\u27 for every Australian child. Although written for the Australian context this paper has broad relevance internationally for teacher education
    • 

    corecore