1,401 research outputs found

    From Wearable Sensors to Smart Implants – Towards Pervasive and Personalised Healthcare

    No full text
    <p>Objective: This article discusses the evolution of pervasive healthcare from its inception for activity recognition using wearable sensors to the future of sensing implant deployment and data processing. Methods: We provide an overview of some of the past milestones and recent developments, categorised into different generations of pervasive sensing applications for health monitoring. This is followed by a review on recent technological advances that have allowed unobtrusive continuous sensing combined with diverse technologies to reshape the clinical workflow for both acute and chronic disease management. We discuss the opportunities of pervasive health monitoring through data linkages with other health informatics systems including the mining of health records, clinical trial databases, multi-omics data integration and social media. Conclusion: Technical advances have supported the evolution of the pervasive health paradigm towards preventative, predictive, personalised and participatory medicine. Significance: The sensing technologies discussed in this paper and their future evolution will play a key role in realising the goal of sustainable healthcare systems.</p> <p> </p

    Social and behavioral determinants of health in the era of artificial intelligence with electronic health records: A scoping review

    Full text link
    Background: There is growing evidence that social and behavioral determinants of health (SBDH) play a substantial effect in a wide range of health outcomes. Electronic health records (EHRs) have been widely employed to conduct observational studies in the age of artificial intelligence (AI). However, there has been little research into how to make the most of SBDH information from EHRs. Methods: A systematic search was conducted in six databases to find relevant peer-reviewed publications that had recently been published. Relevance was determined by screening and evaluating the articles. Based on selected relevant studies, a methodological analysis of AI algorithms leveraging SBDH information in EHR data was provided. Results: Our synthesis was driven by an analysis of SBDH categories, the relationship between SBDH and healthcare-related statuses, and several NLP approaches for extracting SDOH from clinical literature. Discussion: The associations between SBDH and health outcomes are complicated and diverse; several pathways may be involved. Using Natural Language Processing (NLP) technology to support the extraction of SBDH and other clinical ideas simplifies the identification and extraction of essential concepts from clinical data, efficiently unlocks unstructured data, and aids in the resolution of unstructured data-related issues. Conclusion: Despite known associations between SBDH and disease, SBDH factors are rarely investigated as interventions to improve patient outcomes. Gaining knowledge about SBDH and how SBDH data can be collected from EHRs using NLP approaches and predictive models improves the chances of influencing health policy change for patient wellness, and ultimately promoting health and health equity. Keywords: Social and Behavioral Determinants of Health, Artificial Intelligence, Electronic Health Records, Natural Language Processing, Predictive ModelComment: 32 pages, 5 figure

    Internet of Things Architectures, Technologies, Applications, Challenges, and Future Directions for Enhanced Living Environments and Healthcare Systems: A Review

    Get PDF
    Internet of Things (IoT) is an evolution of the Internet and has been gaining increased attention from researchers in both academic and industrial environments. Successive technological enhancements make the development of intelligent systems with a high capacity for communication and data collection possible, providing several opportunities for numerous IoT applications, particularly healthcare systems. Despite all the advantages, there are still several open issues that represent the main challenges for IoT, e.g., accessibility, portability, interoperability, information security, and privacy. IoT provides important characteristics to healthcare systems, such as availability, mobility, and scalability, that o er an architectural basis for numerous high technological healthcare applications, such as real-time patient monitoring, environmental and indoor quality monitoring, and ubiquitous and pervasive information access that benefits health professionals and patients. The constant scientific innovations make it possible to develop IoT devices through countless services for sensing, data fusing, and logging capabilities that lead to several advancements for enhanced living environments (ELEs). This paper reviews the current state of the art on IoT architectures for ELEs and healthcare systems, with a focus on the technologies, applications, challenges, opportunities, open-source platforms, and operating systems. Furthermore, this document synthesizes the existing body of knowledge and identifies common threads and gaps that open up new significant and challenging future research directions.info:eu-repo/semantics/publishedVersio

    Healthcare in the Smart Home: A Study of Past, Present and Future

    Get PDF
    Open Access journalUbiquitous or Pervasive Computing is an increasingly used term throughout the technology industry and is beginning to enter the consumer electronics space in its most recent form under the umbrella term: “Internet of Things”. One area of focus is in augmenting the home with intelligent, networked sensors and computers to create a Smart Home which opens a host of possibilities for the role of tomorrow’s dwelling. As the world’s population continues to live longer and consequently experience more medical-related ailments, at the same time institutional healthcare is struggling to cope, the role of the Smart Home becomes paramount to monitoring a dweller’s health and providing any necessary intervention. This study looks at the history of Smart Home Healthcare, current research areas, and potential areas of future investigation. Unique categorisations are presented in Activities of Daily Living (ADL) and Personal Sensors, and a thorough look at the application of Smart Home Healthcare is presented. Technology can augment traditional methods of healthcare delivery and in some cases completely replace it. Costs can be reduced and medical adherence can be increased, all of which contribute to a more sustainable and effective model of care

    Connected healthcare: Improving patient care using digital health technologies

    Get PDF
    Now more than ever, traditional healthcare models are being overhauled with digital technologies of Healthcare 4.0 being increasingly adopted. Worldwide, digital devices are improving every stage of the patient care pathway. For one, sensors are being used to monitor patient metrics 24/7, permitting swift diagnosis and interventions. At the treatment stage, 3D printers are currently being investigated for the concept of personalised medicine by allowing patients access to on-demand, customisable therapeutics. Robots are also being explored for treatment, by empowering precision surgery or targeted drug delivery. Within medical logistics, drones are being leveraged to deliver critical treatments to remote areas, collect samples, and even provide emergency aid. To enable seamless integration within healthcare, the Internet of Things technology is being exploited to form closed-loop systems that remotely communicate with one another. This review outlines the most promising healthcare technologies and devices, their strengths, drawbacks, and scopes for clinical adoption

    An IoT based Virtual Coaching System (VSC) for Assisting Activities of Daily Life

    Get PDF
    Nowadays aging of the population is becoming one of the main concerns of theworld. It is estimated that the number of people aged over 65 will increase from 461million to 2 billion in 2050. This substantial increment in the elderly population willhave significant consequences in the social and health care system. Therefore, in thecontext of Ambient Intelligence (AmI), the Ambient Assisted Living (AAL) has beenemerging as a new research area to address problems related to the aging of the population. AAL technologies based on embedded devices have demonstrated to be effectivein alleviating the social- and health-care issues related to the continuous growing of theaverage age of the population. Many smart applications, devices and systems have beendeveloped to monitor the health status of elderly, substitute them in the accomplishment of activities of the daily life (especially in presence of some impairment or disability),alert their caregivers in case of necessity and help them in recognizing risky situations.Such assistive technologies basically rely on the communication and interaction be-tween body sensors, smart environments and smart devices. However, in such contextless effort has been spent in designing smart solutions for empowering and supportingthe self-efficacy of people with neurodegenerative diseases and elderly in general. Thisthesis fills in the gap by presenting a low-cost, non intrusive, and ubiquitous VirtualCoaching System (VCS) to support people in the acquisition of new behaviors (e.g.,taking pills, drinking water, finding the right key, avoiding motor blocks) necessary tocope with needs derived from a change in their health status and a degradation of theircognitive capabilities as they age. VCS is based on the concept of extended mind intro-duced by Clark and Chalmers in 1998. They proposed the idea that objects within theenvironment function as a part of the mind. In my revisiting of the concept of extendedmind, the VCS is composed of a set of smart objects that exploit the Internet of Things(IoT) technology and machine learning-based algorithms, in order to identify the needsof the users and react accordingly. In particular, the system exploits smart tags to trans-form objects commonly used by people (e.g., pillbox, bottle of water, keys) into smartobjects, it monitors their usage according to their needs, and it incrementally guidesthem in the acquisition of new behaviors related to their needs. To implement VCS, thisthesis explores different research directions and challenges. First of all, it addresses thedefinition of a ubiquitous, non-invasive and low-cost indoor monitoring architecture byexploiting the IoT paradigm. Secondly, it deals with the necessity of developing solu-tions for implementing coaching actions and consequently monitoring human activitiesby analyzing the interaction between people and smart objects. Finally, it focuses on the design of low-cost localization systems for indoor environment, since knowing theposition of a person provides VCS with essential information to acquire information onperformed activities and to prevent risky situations. In the end, the outcomes of theseresearch directions have been integrated into a healthcare application scenario to imple-ment a wearable system that prevents freezing of gait in people affected by Parkinson\u2019sDisease

    Towards the internet of smart clothing: a review on IoT wearables and garments for creating intelligent connected e-textiles

    Get PDF
    [Abstract] Technology has become ubiquitous, it is all around us and is becoming part of us. Togetherwith the rise of the Internet of Things (IoT) paradigm and enabling technologies (e.g., Augmented Reality (AR), Cyber-Physical Systems, Artificial Intelligence (AI), blockchain or edge computing), smart wearables and IoT-based garments can potentially have a lot of influence by harmonizing functionality and the delight created by fashion. Thus, smart clothes look for a balance among fashion, engineering, interaction, user experience, cybersecurity, design and science to reinvent technologies that can anticipate needs and desires. Nowadays, the rapid convergence of textile and electronics is enabling the seamless and massive integration of sensors into textiles and the development of conductive yarn. The potential of smart fabrics, which can communicate with smartphones to process biometric information such as heart rate, temperature, breathing, stress, movement, acceleration, or even hormone levels, promises a new era for retail. This article reviews the main requirements for developing smart IoT-enabled garments and shows smart clothing potential impact on business models in the medium-term. Specifically, a global IoT architecture is proposed, the main types and components of smart IoT wearables and garments are presented, their main requirements are analyzed and some of the most recent smart clothing applications are studied. In this way, this article reviews the past and present of smart garments in order to provide guidelines for the future developers of a network where garments will be connected like other IoT objects: the Internet of Smart Clothing.Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED341D R2016/012Xunta de Galicia; ED431G/01Agencia Estatal de Investigación de España; TEC2013-47141-C4-1-RAgencia Estatal de Investigación de España; TEC2016-75067-C4-1-RAgencia Estatal de Investigación de España; TEC2015-69648-RED

    Quantifying Quality of Life

    Get PDF
    Describes technological methods and tools for objective and quantitative assessment of QoL Appraises technology-enabled methods for incorporating QoL measurements in medicine Highlights the success factors for adoption and scaling of technology-enabled methods This open access book presents the rise of technology-enabled methods and tools for objective, quantitative assessment of Quality of Life (QoL), while following the WHOQOL model. It is an in-depth resource describing and examining state-of-the-art, minimally obtrusive, ubiquitous technologies. Highlighting the required factors for adoption and scaling of technology-enabled methods and tools for QoL assessment, it also describes how these technologies can be leveraged for behavior change, disease prevention, health management and long-term QoL enhancement in populations at large. Quantifying Quality of Life: Incorporating Daily Life into Medicine fills a gap in the field of QoL by providing assessment methods, techniques and tools. These assessments differ from the current methods that are now mostly infrequent, subjective, qualitative, memory-based, context-poor and sparse. Therefore, it is an ideal resource for physicians, physicians in training, software and hardware developers, computer scientists, data scientists, behavioural scientists, entrepreneurs, healthcare leaders and administrators who are seeking an up-to-date resource on this subject
    corecore