332 research outputs found

    ATMP: An Adaptive Tolerance-based Mixed-criticality Protocol for Multi-core Systems

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted ncomponent of this work in other works.The challenge of mixed-criticality scheduling is to keep tasks of higher criticality running in case of resource shortages caused by faults. Traditionally, mixedcriticality scheduling has focused on methods to handle faults where tasks overrun their optimistic worst-case execution time (WCET) estimate. In this paper we present the Adaptive Tolerance based Mixed-criticality Protocol (ATMP), which generalises the concept of mixed-criticality scheduling to handle also faults of other nature, like failure of cores in a multi-core system. ATMP is an adaptation method triggered by resource shortage at runtime. The first step of ATMP is to re-partition the task to the available cores and the second step is to optimise the utility at each core using the tolerance-based real-time computing model (TRTCM). The evaluation shows that the utility optimisation of ATMP can achieve a smoother degradation of service compared to just abandoning tasks

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards

    Towards a Fault-tolerant, Scheduling Methodology for Safety-critical Certified Information Systems

    Get PDF
    Today, many critical information systems have safety-critical and non-safety-critical functions executed on the same platform in order to reduce design and implementation costs. The set of safety-critical functionality is subject to certification requirements and the rest of the functionality does not need to be certified, or is certified to a lower level. The resulting mixed-criticality systems bring challenges in designing such systems, especially when the critical tasks are required to complete with a timing constraint. This paper studies a problem of scheduling a mixed-criticality system with fault tolerance. A fault-recovery technique called checkpointing is used where a program can go back to a recent checkpoint for re-execution upon errors occurred. A novel schedulability test is derived to ensure that the safety-critical tasks are completed before their deadlines and the theoretical correctness is shown

    Combined Scheduling of Time-Triggered Plans and Priority Scheduled Task Sets

    Full text link
    © Owner/Author (2016). This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM SIGAda Ada Letters, 36(1), 68-76, http://dx.doi.org/10.1145/10.1145/2971571.2971580.[EN] Preemptive, priority-based scheduling on the one hand, and time-triggered scheduling on the other, are the two major techniques in use for development of real-time and embedded software. Both have their advantages and drawbacks with respect to the other, and are commonly adopted in mutual exclusion. In a previous paper, we proposed a software architecture that enables the combined and controlled execution of time-triggered plans and priority-scheduled tasks. The goal was to take advantage of the best of both approaches by providing deterministic, jitter-controlled execution of time-triggered tasks (e.g., control tasks), coexisting with a set of priority-scheduled tasks, with less demanding jitter requirements. In this paper, we briefly describe the approach, in which the time-triggered plan is executed at the highest priority level, controlled by scheduling decisions taken only at particular points in time, signalled by recurrent timing events. The rest of priority levels are used by a set of concurrent tasks scheduled by static or dynamic priorities. We also discuss several open issues such as schedulability analysis, use of the approach in multiprocessor architectures, usability in mixed-criticality systems and needed changes to make this approach Ravenscar compliant.This work has been partly supported by the Spanish Government’s project M2C2 (TIN2014-56158-C4-1-P-AR) and the European Commission’s project EMC2 (ARTEMIS-JU Call 2013 AIPP-5, Contract 621429).Real Sáez, JV.; Sáez Barona, S.; Crespo Lorente, A. (2016). Combined Scheduling of Time-Triggered Plans and Priority Scheduled Task Sets. Ada Letters. 36(1):68-76. https://doi.org/10.1145/2971571.2971580S6876361T. P. Baker and A. Shaw. The cyclic executive model and Ada. In Proceedings IEEE Real Time Systems Symposium 1988, Huntsville, Alabama, pages 120--129, 1988.P. Balbastre, I. Ripoll, J. Vidal, and A. Crespo. A Task Model to Reduce Control Delays. Real-Time Systems, 27(3):215--236, September 2004.A. Burns and R. Davis. Mixed Criticality Systems - A Review. Technical report, Depatment of Computer Science, University of York, 2013.A. Cervin. Integrated Control and Real-Time Scheduling. PhD thesis, Lund Institute of Technology, April 2003.R. Dobrin. Combining Offline Schedule Construction and Fixed Priority Scheduling in Real-Time Computer Systems. PhD thesis, Mälardalen University, 2005.S. Hong, X. Hu, and M. Lemmon. Reducing Delay Jitter of Real-Time Control Tasks through Adaptive Deadline Adjustments. In IEEE Computer Society, editor, 22nd Euromicro Conference on Real-Time Systems -- ECRTS, pages 229--238, 2010.J. W. S. Liu. Real-Time Systems. Prentice-Hall Inc., 2000.J. Palencia and M. González-Harbour. Schedulability Analysis for Tasks with Static and Dynamic Offsets. In 9th IEEE Real-Time Systems Symposium, 1998.M. J. Pont. The Engineering of Reliable Embedded Systems: LPC1769 edition. Number ISBN: 978-0-9930355-0-0. SafeTTy Systems Limited, 2014.J. Real and A. Crespo. Incorporating Operating Modes to an Ada Real-Time Framework. Ada Letters, 30(1):73--85, April 2010.J. Real, S. Sáez, and A. Crespo. Combining time-triggered plans with priority scheduled task sets. In M. Bertogna and L. M. Pinho, editors, Reliable Software Technologies -- Ada-Europe 2016, volume 9695 of Lecture Notes in Computer Science. Springer, June 2016.S. Sáez, J. Real, and A. Crespo. An integrated framework for multiprocessor, multimoded real-time applications. In M. Brorsson and L. Pinho, editors, Reliable Software Technologies -- Ada-Europe 2012, volume 7308, pages 18--34. Springer-Verlag, June 2012.S. Sáez, J. Real, and A. Crespo. Implementation of Timing-Event Anities in Ada/Linux. Ada Letters, 35(1), April 2015.A. J. Wellings and A. Burns. A Framework for Real-Time Utilities for Ada 2005. Ada Letters, XXVII(2), August 2007

    A Design That Incorporates Adaptive Reservation into Mixed-Criticality Systems

    Get PDF

    A Benes Based NoC Switching Architecture for Mixed Criticality Embedded Systems

    Get PDF
    Multi-core, Mixed Criticality Embedded (MCE) real-time systems require high timing precision and predictability to guarantee there will be no interference between tasks. These guarantees are necessary in application areas such as avionics and automotive, where task interference or missed deadlines could be catastrophic, and safety requirements are strict. In modern multi-core systems, the interconnect becomes a potential point of uncertainty, introducing major challenges in proving behaviour is always within specified constraints, limiting the means of growing system performance to add more tasks, or provide more computational resources to existing tasks. We present MCENoC, a Network-on-Chip (NoC) switching architecture that provides innovations to overcome this with predictable, formally verifiable timing behaviour that is consistent across the whole NoC. We show how the fundamental properties of Benes networks benefit MCE applications and meet our architecture requirements. Using SystemVerilog Assertions (SVA), formal properties are defined that aid the refinement of the specification of the design as well as enabling the implementation to be exhaustively formally verified. We demonstrate the performance of the design in terms of size, throughput and predictability, and discuss the application level considerations needed to exploit this architecture

    Task Mapping and Partition Allocation for Mixed-Criticality Real-Time Systems

    Get PDF
    Abstract—In this paper we address the mapping of mixed-criticality hard real-time applications on distributed embedded architectures. We assume that the architecture provides both spa-tial and temporal partitioning, thus enforcing enough separation between applications. With temporal partitioning, each application runs in a separate partition, and each partition is allocated several time slots on the processors where the application is mapped. The sequence of time slots for all the applications on a processor are grouped within a Major Frame, which is repeated periodically. We assume that the applications are scheduled using static-cyclic scheduling. We are interested to determine the task mapping to processors, and the sequence and size of the time slots within the Major Frame on each processor, such that the applications are schedulable. We have proposed a Tabu Search-based approach to solve this optimization problem. The proposed algorithm has been evaluated using several synthetic and real-life benchmarks. I
    • …
    corecore