598 research outputs found

    On the Distinguishing Number of Cyclic Tournaments: Towards the Albertson-Collins Conjecture

    Full text link
    A distinguishing rr-labeling of a digraph GG is a mapping λ\lambda from the set of verticesof GG to the set of labels {1,
,r}\{1,\dots,r\} such that no nontrivial automorphism of GG preserves all the labels.The distinguishing number D(G)D(G) of GG is then the smallest rr for which GG admits a distinguishing rr-labeling.From a result of Gluck (David Gluck, Trivial set-stabilizers in finite permutation groups,{\em Can. J. Math.} 35(1) (1983), 59--67),it follows that D(T)=2D(T)=2 for every cyclic tournament~TT of (odd) order 2q+1≄32q+1\ge 3.Let V(T)={0,
,2q}V(T)=\{0,\dots,2q\} for every such tournament.Albertson and Collins conjectured in 1999that the canonical 2-labeling λ∗\lambda^* given byλ∗(i)=1\lambda^*(i)=1 if and only if i≀qi\le q is distinguishing.We prove that whenever one of the subtournaments of TT induced by vertices {0,
,q}\{0,\dots,q\}or {q+1,
,2q}\{q+1,\dots,2q\} is rigid, TT satisfies Albertson-Collins Conjecture.Using this property, we prove that several classes of cyclic tournaments satisfy Albertson-Collins Conjecture.Moreover, we also prove that every Paley tournament satisfies Albertson-Collins Conjecture

    Gråfszínezések és gråfok felbontåsai = Colorings and decompositions of graphs

    Get PDF
    A nem-ismĂ©tlƑ szĂ­nezĂ©seket a vĂ©letlen mĂłdszer alkalmazhatĂłsĂĄga miatt kezdtĂ©k el vizsgĂĄlni. FelsƑ korlĂĄtot adtunk a szĂ­nek szĂĄmĂĄra, amely a maximum fok Ă©s a favastagsĂĄg lineĂĄris fĂŒggvĂ©nye. Olyan szĂ­nezĂ©seket is vizsgĂĄltunk, amelyek egy sĂ­kgrĂĄf oldalain nem-ismĂ©tlƑk. SejtĂ©s volt, hogy vĂ©ges sok szĂ­n elĂ©g. Ezt bizonyĂ­tottuk 24 szĂ­nnel. A kromatikus szĂĄmot Ă©s a metszĂ©si szĂĄmot algoritmikusan nehĂ©z meghatĂĄrozni. EzĂ©rt meglepƑ Albertson egy friss sejtĂ©se, amely kapcsolatot ĂĄllĂ­t fel közöttĂŒk: ha egy grĂĄf kromatikus szĂĄma r, akkor metszĂ©si szĂĄma legalĂĄbb annyi, mint a teljes r csĂșcsĂș grĂĄfĂ©. BizonyĂ­tottuk a sejtĂ©st, ha r<3.57n, valamint ha 12<r<17. Ez utĂłbbi azĂ©rt Ă©rdekes, mert a teljes r csĂșcsĂș grĂĄf metszĂ©si szĂĄma csak r<13 esetĂ©n ismert. A tĂ©makör legfontosabb nyitott kĂ©rdĂ©se a Hadwiger-sejtĂ©s, mely szerint minden r-kromatikus grĂĄf tartalmazza a teljes r csĂșcsĂș grĂĄfot minorkĂ©nt. Ennek ĂĄltalĂĄnosĂ­tĂĄsakĂ©nt fogalmaztĂĄk meg a lista szĂ­nezĂ©si Hadwiger sejtĂ©st: ha egy grĂĄf nem tartalmaz teljes r csĂșcsĂș grĂĄfot minorkĂ©nt, akkor az r-lista szĂ­nezhetƑ. Megmutattuk, hogy ez a sejtĂ©s hamis. LegalĂĄbb cr szĂ­nre szĂŒksĂ©gĂŒnk van bizonyos grĂĄfokra, ahol c=4/3. Thomassennel vetettĂŒk fel azt a kĂ©rdĂ©st, hogy milyen feltĂ©tel garantĂĄlja, hogy G Ă©lei felbonthatĂłk egy adott T fa pĂ©ldĂĄnyaira. Legyen Y az a fa, melynek fokszĂĄmsorozata (1,1,1,2,3). Megmutattuk, hogy minden 287-szeresen Ă©lösszefĂŒggƑ fa felbomlik Y-okra, ha az Ă©lszĂĄm oszthatĂł 4-gyel. | Nonrepetitive colorings often use the probabilistic method. We gave an upper bound as a linear function of the maximum degree and the tree-width. We also investigated colorings, which are nonrepetitive on faces of plane graphs. As conjectured, a finite number of colors suffice. We proved it by 24 colors. The chromatic and crossing numbers are both difficult to compute. The recent Albertson's conjecture is a surprising relation between the two: if the chromatic number is r, then the crossing number is at least the crossing number of the complete graph on r vertices. We proved this claim, if r<3.57n, or 12<r<17. The latter is remarkable, since the crossing number of the complete graph is only known for r<13. The most important open question of the field is Hadwiger's conjecture: every r-chromatic graph contains as a minor the complete graph on r vertices. As a generalisation, the following is the list coloring Hadwiger conjecture: if a graph does not contain as a minor the complete graph on r vertices , then the graph is r-list colorable. We proved the falsity of this claim. In our examples, at least cr colors are necessary, where c=4/3. Decomposition of graphs is well-studied. Thomassen and I posed the question of a sufficient connectivity condition, which guaranties a T-decomposition. Let Y be the tree with degree sequence (1,1,1,2,3). We proved every 287-edge connected graph has a Y-decomposition, if the size is divisible by four
    • 

    corecore