86 research outputs found

    An overview of robotics and autonomous systems for harsh environments

    Get PDF
    Across a wide range of industries and applications, robotics and autonomous systems can fulfil the crucial and challenging tasks such as inspection, exploration, monitoring, drilling, sampling and mapping in areas of scientific discovery, disaster prevention, human rescue and infrastructure management, etc. However, in many situations, the associated environment is either too dangerous or inaccessible to humans. Hence, a wide range of robots have been developed and deployed to replace or aid humans in these activities. A look at these harsh environment applications of robotics demonstrate the diversity of technologies developed. This paper reviews some key application areas of robotics that involve interactions with harsh environments (such as search and rescue, space exploration, and deep-sea operations), gives an overview of the developed technologies and provides a discussion of the key trends and future directions common to many of these areas

    General Concepts for Human Supervision of Autonomous Robot Teams

    Get PDF
    For many dangerous, dirty or dull tasks like in search and rescue missions, deployment of autonomous teams of robots can be beneficial due to several reasons. First, robots can replace humans in the workspace. Second, autonomous robots reduce the workload of a human compared to teleoperated robots, and therefore multiple robots can in principle be supervised by a single human. Third, teams of robots allow distributed operation in time and space. This thesis investigates concepts of how to efficiently enable a human to supervise and support an autonomous robot team, as common concepts for teleoperation of robots do not apply because of the high mental workload. The goal is to find a way in between the two extremes of full autonomy and pure teleoperation, by allowing to adapt the robots’ level of autonomy to the current situation and the needs of the human supervisor. The methods presented in this thesis make use of the complementary strengths of humans and robots, by letting the robots do what they are good at, while the human should support the robots in situations that correspond to the human strengths. To enable this type of collaboration between a human and a robot team, the human needs to have an adequate knowledge about the current state of the robots, the environment, and the mission. For this purpose, the concept of situation overview (SO) has been developed in this thesis, which is composed of the two components robot SO and mission SO. Robot SO includes information about the state and activities of each single robot in the team, while mission SO deals with the progress of the mission and the cooperation between the robots. For obtaining SO a new event-based communication concept is presented in this thesis, that allows the robots to aggregate information into discrete events using methods from complex event processing. The quality and quantity of the events that are actually sent to the supervisor can be adapted during runtime by defining positive and negative policies for (not) sending events that fulfill specific criteria. This reduces the required communication bandwidth compared to sending all available data. Based on SO, the supervisor is enabled to efficiently interact with the robot team. Interactions can be initiated either by the human or by the robots. The developed concept for robot-initiated interactions is based on queries, that allow the robots to transfer decisions to another process or the supervisor. Various modes for answering the queries, ranging from fully autonomous to pure human decisions, allow to adapt the robots’ level of autonomy during runtime. Human-initiated interactions are limited to high-level commands, whereas interactions on the action level (e. g., teleoperation) are avoided, to account for the specific strengths of humans and robots. These commands can in principle be applied to quite general classes of task allocation methods for autonomous robot teams, e. g., in terms of specific restrictions, which are introduced into the system as constraints. In that way, the desired allocations emerge implicitly because of the introduced constraints, and the task allocation method does not need to be aware of the human supervisor in the loop. This method is applicable to different task allocation approaches, e. g., instantaneous or time-extended task assignments, and centralized or distributed algorithms. The presented methods are evaluated by a number of different experiments with physical and simulated scenarios from urban search and rescue as well as robot soccer, and during robot competitions. The results show that with these methods a human supervisor can significantly improve the robot team performance

    Human-Machine Interfaces for Service Robotics

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    An Evaluation Schema for the Ethical Use of Autonomous Robotic Systems in Security Applications

    Get PDF
    We propose a multi-step evaluation schema designed to help procurement agencies and others to examine the ethical dimensions of autonomous systems to be applied in the security sector, including autonomous weapons systems

    Apprenticeship Bootstrapping for Autonomous Aerial Shepherding of Ground Swarm

    Full text link
    Aerial shepherding of ground vehicles (ASGV) musters a group of uncrewed ground vehicles (UGVs) from the air using uncrewed aerial vehicles (UAVs). This inspiration enables robust uncrewed ground-air coordination where one or multiple UAVs effectively drive a group of UGVs towards a goal. Developing artificial intelligence (AI) agents for ASGV is a non-trivial task due to the sub-tasks, multiple skills, and their non-linear interaction required to synthesise a solution. One approach to developing AI agents is Imitation learning (IL), where humans demonstrate the task to the machine. However, gathering human data from complex tasks in human-swarm interaction (HSI) requires the human to perform the entire job, which could lead to unexpected errors caused by a lack of control skills and human workload due to the length and complexity of ASGV. We hypothesise that we can bootstrap the overall task by collecting human data from simpler sub-tasks to limit errors and workload for humans. Therefore, this thesis attempts to answer the primary research question of how to design IL algorithms for multiple agents. We propose a new learning scheme called Apprenticeship Bootstrapping (AB). In AB, the low-level behaviours of the shepherding agents are trained from human data using our proposed hierarchical IL algorithms. The high-level behaviours are then formed using a proposed gesture demonstration framework to collect human data from synthesising more complex controllers. The transferring mechanism is performed by aggregating the proposed IL algorithms. Experiments are designed using a mixed environment, where the UAV flies in a simulated robotic Gazebo environment, while the UGVs are physical vehicles in a natural environment. A system is designed to allow switching between humans controlling the UAVs using low-level actions and humans controlling the UAVs using high-level actions. The former enables data collection for developing autonomous agents for sub-tasks. At the same time, in the latter, humans control the UAV by issuing commands that call the autonomous agents for the sub-tasks. We baseline the learnt agents against Str\"{o}mbom scripted behaviours and show that the system can successfully generate autonomous behaviours for ASGV

    Unmanned Vehicle Systems & Operations on Air, Sea, Land

    Get PDF
    Unmanned Vehicle Systems & Operations On Air, Sea, Land is our fourth textbook in a series covering the world of Unmanned Aircraft Systems (UAS) and Counter Unmanned Aircraft Systems (CUAS). (Nichols R. K., 2018) (Nichols R. K., et al., 2019) (Nichols R. , et al., 2020)The authors have expanded their purview beyond UAS / CUAS systems. Our title shows our concern for growth and unique cyber security unmanned vehicle technology and operations for unmanned vehicles in all theaters: Air, Sea and Land – especially maritime cybersecurity and China proliferation issues. Topics include: Information Advances, Remote ID, and Extreme Persistence ISR; Unmanned Aerial Vehicles & How They Can Augment Mesonet Weather Tower Data Collection; Tour de Drones for the Discerning Palate; Underwater Autonomous Navigation & other UUV Advances; Autonomous Maritime Asymmetric Systems; UUV Integrated Autonomous Missions & Drone Management; Principles of Naval Architecture Applied to UUV’s; Unmanned Logistics Operating Safely and Efficiently Across Multiple Domains; Chinese Advances in Stealth UAV Penetration Path Planning in Combat Environment; UAS, the Fourth Amendment and Privacy; UV & Disinformation / Misinformation Channels; Chinese UAS Proliferation along New Silk Road Sea / Land Routes; Automaton, AI, Law, Ethics, Crossing the Machine – Human Barrier and Maritime Cybersecurity.Unmanned Vehicle Systems are an integral part of the US national critical infrastructure The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. Unmanned Vehicle (UV) Systems & Operations On Air, Sea, Land discusses state-of-the-art technology / issues facing U.S. UV system researchers / designers / manufacturers / testers. We trust our newest look at Unmanned Vehicles in Air, Sea, and Land will enrich our students and readers understanding of the purview of this wonderful technology we call UV.https://newprairiepress.org/ebooks/1035/thumbnail.jp
    • …
    corecore