1,723 research outputs found

    Join operation for semantic data enrichment of asynchronous time series data

    Get PDF
    In this paper, we present a novel framework for enriching time series data in smart cities by supplementing it with information from external sources via semantic data enrichment. Our methodology effectively merges multiple data sources into a uniform time series, while addressing difficulties such as data quality, contextual information, and time lapses. We demonstrate the efficacy of our method through a case study in Barcelona, which permitted the use of advanced analysis methods such as windowed cross-correlation and peak picking. The resulting time series data can be used to determine traffic patterns and has potential uses in other smart city sectors, such as air quality, energy efficiency, and public safety. Interactive dashboards enable stakeholders to visualize and summarize key insights and patterns.Postprint (published version

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Enabling long-term oceanographic research : changing data practices, information management strategies and informatics

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 2132-2142, doi:10.1016/j.dsr2.2008.05.009.Interdisciplinary global ocean science requires new ways of thinking about data and data management. With new data policies and growing technological capabilities, datasets of increasing variety and complexity are being made available digitally and data management is coming to be recognized as an integral part of scientific research. To meet the changing expectations of scientists collecting data and of data reuse by others, collaborative strategies involving diverse teams of information professionals are developing. These changes are stimulating the growth of information infrastructures that support multi-scale sampling, data repositories, and data integration. Two examples of oceanographic projects incorporating data management in partnership with science programs are discussed: the Palmer Station Long-Term Ecological Research program (Palmer LTER) and the United States Joint Global Ocean Flux Study (US JGOFS). Lessons learned from a decade of data management within these communities provide an experience base from which to develop information management strategies – short-term and long-term. Ocean Informatics provides one example of a conceptual framework for managing the complexities inherent to sharing oceanographic data. Elements are introduced that address the economies-of-scale and the complexities-of-scale pertinent to a broader vision of information management and scientific research.Support is provided by NSF OPP-0217282, OCE-0405069, HSD-0433369 and Scripps Institution of Oceanography (K.S.Baker) and by NSF OCE-8814310, OCE-0097291, OCE- 0510046 and OCE-0646353 (C.Chandler)

    Human Computation and Convergence

    Full text link
    Humans are the most effective integrators and producers of information, directly and through the use of information-processing inventions. As these inventions become increasingly sophisticated, the substantive role of humans in processing information will tend toward capabilities that derive from our most complex cognitive processes, e.g., abstraction, creativity, and applied world knowledge. Through the advancement of human computation - methods that leverage the respective strengths of humans and machines in distributed information-processing systems - formerly discrete processes will combine synergistically into increasingly integrated and complex information processing systems. These new, collective systems will exhibit an unprecedented degree of predictive accuracy in modeling physical and techno-social processes, and may ultimately coalesce into a single unified predictive organism, with the capacity to address societies most wicked problems and achieve planetary homeostasis.Comment: Pre-publication draft of chapter. 24 pages, 3 figures; added references to page 1 and 3, and corrected typ

    Ecosystem-inspired enterprise modelling framework for collaborative and networked manufacturing systems

    Get PDF
    Rapid changes in the open manufacturing environment are imminent due to the increase of customer demand, global competition, and digital fusion. This has exponentially increased both complexity and uncertainty in the manufacturing landscape, creating serious challenges for competitive enterprises. For enterprises to remain competitive, analysing manufacturing activities and designing systems to address emergent needs, in a timely and efficient manner, is understood to be crucial. However, existing analysis and design approaches adopt a narrow diagnostic focus on either managerial or engineering aspects and neglect to consider the holistic complex behaviour of enterprises in a collaborative manufacturing network (CMN). It has been suggested that reflecting upon ecosystem theory may bring a better understanding of how to analyse the CMN. The research presented in this paper draws on a theoretical discussion with aim to demonstrate a facilitating approach to those analysis and design tasks. This approach was later operationalised using enterprise modelling (EM) techniques in a novel, developed framework that enhanced systematic analysis, design, and business-IT alignment. It is expected that this research view is opening a new field of investigation

    Social media mining as an opportunistic citizen science model in ecological monitoring: a case study using invasive alien species in forest ecosystems.

    Get PDF
    Dramatische ökologische, ökonomische und soziale Veränderungen bedrohen die Stabilität von Ökosystemen weltweit und stellen zusammen mit neuen Ansprüchen an die vielfältigen Ökosystemdienstleistungen von Wäldern neue Herausforderungen für das forstliche Management und Monitoring dar. Neue Risiken und Gefahren, wie zum Beispiel eingebürgerte invasive Arten (Neobiota), werfen grundsätzliche Fragen hinsichtlich etablierter forstlicher Managementstrategien auf, da diese Strategien auf der Annahme stabiler Ökosysteme basieren. Anpassungsfähige Management- und Monitoringstrategien sind deshalb notwendig, um diese neuen Bedrohungen und Veränderungen frühzeitig zu erkennen. Dies erfordert jedoch ein großflächiges und umfassendes Monitoring, was unter Maßgabe begrenzter Ressourcen nur bedingt möglich ist. Angesichts dieser Herausforderungen haben Forstpraktiker und Wissenschaftler begonnen auch auf die Unterstützung von Freiwilligen in Form sogenannter „Citizen Science“-Projekte (Bürgerwissenschaft) zurückzugreifen, um zusätzliche Informationen zu sammeln und flexibel auf spezifische Fragestellungen reagieren zu können. Mit der allgemeinen Verfügbarkeit des Internets und mobiler Geräte ist in Form sogenannter sozialer Medien zudem eine neue digitale Informationsquelle entstanden. Mittels dieser Technologien übernehmen Nutzer prinzipiell die Funktion von Umweltsensoren und erzeugen indirekt ein ungeheures Volumen allgemein zugänglicher Umgebungs- und Umweltinformationen. Die automatische Analyse von sozialen Medien wie Facebook, Twitter, Wikis oder Blogs, leistet inzwischen wichtige Beiträge zu Bereichen wie dem Monitoring von Infektionskrankheiten, Katastrophenschutz oder der Erkennung von Erdbeben. Anwendungen mit einem ökologischen Bezug existieren jedoch nur vereinzelt, und eine methodische Bearbeitung dieses Anwendungsbereichs fand bisher nicht statt. Unter Anwendung des Mikroblogging-Dienstes Twitter und des Beispiels eingebürgerter invasiver Arten in Waldökosystemen, verfolgt die vorliegende Arbeit eine solche methodische Bearbeitung und Bewertung sozialer Medien im Monitoring von Wäldern. Die automatische Analyse sozialer Medien wird dabei als opportunistisches „Citizen Science“-Modell betrachtet und die verfügbaren Daten, Aktivitäten und Teilnehmer einer vergleichenden Analyse mit existierenden bewusst geplanten „Citizen Science“-Projekten im Umweltmonitoring unterzogen. Die vorliegenden Ergebnisse zeigen, dass Twitter eine wertvolle Informationsquelle über invasive Arten darstellt und dass soziale Medien im Allgemeinen traditionelle Umweltinformationen ergänzen könnten. Twitter ist eine reichhaltige Quelle von primären Biodiversitätsbeobachtungen, einschließlich solcher zu eingebürgerten invasiven Arten. Zusätzlich kann gezeigt werden, dass die analysierten Twitterinhalte für die untersuchten Arten markante Themen- und Informationsprofile aufweisen, die wichtige Beiträge im Management invasiver Arten leisten können. Allgemein zeigt die Studie, dass einerseits das Potential von „Citizen Science“ im forstlichen Monitoring derzeit nicht ausgeschöpft wird, aber andererseits mit denjenigen Nutzern, die Biodiversitätsbeobachtungen auf Twitter teilen, eine große Zahl von Individuen mit einem Interesse an Umweltbeobachtungen zur Verfügung steht, die auf der Basis ihres dokumentierten Interesses unter Umständen für bewusst geplante „Citizen Science“-Projekte mobilisiert werden könnten. Zusammenfassend dokumentiert diese Studie, dass soziale Medien eine wertvolle Quelle für Umweltinformationen allgemein sind und eine verstärkte Untersuchung verdienen, letztlich mit dem Ziel, operative Systeme zur Unterstützung von Risikobewertungen in Echtzeit zu entwickeln.Major environmental, social and economic changes threatening the resilience of ecosystems world-wide and new demands on a broad range of forest ecosystem services present new challenges for forest management and monitoring. New risks and threats such as invasive alien species imply fundamental challenges for traditional forest management strategies, which have been based on assumptions of permanent ecosystem stability. Adaptive management and monitoring is called for to detect new threats and changes as early as possible, but this requires large-scale monitoring and monitoring resources remain a limiting factor. Accordingly, forest practitioners and scientists have begun to turn to public support in the form of “citizen science” to react flexibly to specific challenges and gather critical information. The emergence of ubiquitous mobile and internet technologies provides a new digital source of information in the form of so-called social media that essentially turns users of these media into environmental sensors and provides an immense volume of publicly accessible, ambient environmental information. Mining social media content, such as Facebook, Twitter, Wikis or Blogs, has been shown to make critical contributions to epidemic disease monitoring, emergency management or earthquake detection. Applications in the ecological domain remain anecdotal and a methodical exploration for this domain is lacking. Using the example of the micro-blogging service Twitter and invasive alien species in forest ecosystems, this study provides a methodical exploration and assessment of social media for forest monitoring. Social media mining is approached as an opportunistic citizen science model and the data, activities and contributors are analyzed in comparison to deliberate ecological citizen science monitoring. The results show that Twitter is a valuable source of information on invasive alien species and that social media in general could be a supplement to traditional monitoring data. Twitter proves to be a rich source of primary biodiversity observations including those of the selected invasive species. In addition, it is shown that Twitter content provides distinctive thematic profiles that relate closely to key characteristics of the explored invasive alien species and provide valuable insights for invasive species management. Furthermore, the study shows that while there are underutilized opportunities for citizen science in forest monitoring, the contributors of biodiversity observations on Twitter show a more than casual interest in this subject and represent a large pool of potential contributors to deliberate citizen science monitoring efforts. In summary, social online media are a valuable source for ecological monitoring information in general and deserve intensified exploration to arrive at operational systems supporting real-time risk assessments

    An integrative framework for cooperative production resources in smart manufacturing

    Get PDF
    Under the push of Industry 4.0 paradigm modern manufacturing companies are dealing with a significant digital transition, with the aim to better address the challenges posed by the growing complexity of globalized businesses (Hermann, Pentek, & Otto, Design principles for industrie 4.0 scenarios, 2016). One basic principle of this paradigm is that products, machines, systems and business are always connected to create an intelligent network along the entire factory’s value chain. According to this vision, manufacturing resources are being transformed from monolithic entities into distributed components, which are loosely coupled and autonomous but nevertheless provided of the networking and connectivity capabilities enabled by the increasingly widespread Industrial Internet of Things technology. Under these conditions, they become capable of working together in a reliable and predictable manner, collaborating among themselves in a highly efficient way. Such a mechanism of synergistic collaboration is crucial for the correct evolution of any organization ranging from a multi-cellular organism to a complex modern manufacturing system (Moghaddam & Nof, 2017). Specifically of the last scenario, which is the field of our study, collaboration enables involved resources to exchange relevant information about the evolution of their context. These information can be in turn elaborated to make some decisions, and trigger some actions. In this way connected resources can modify their structure and configuration in response to specific business or operational variations (Alexopoulos, Makris, Xanthakis, Sipsas, & Chryssolouris, 2016). Such a model of “social” and context-aware resources can contribute to the realization of a highly flexible, robust and responsive manufacturing system, which is an objective particularly relevant in the modern factories, as its inclusion in the scope of the priority research lines for the H2020 three-year period 2018-2020 can demonstrate (EFFRA, 2016). Interesting examples of these resources are self-organized logistics which can react to unexpected changes occurred in production or machines capable to predict failures on the basis of the contextual information and then trigger adjustments processes autonomously. This vision of collaborative and cooperative resources can be realized with the support of several studies in various fields ranging from information and communication technologies to artificial intelligence. An update state of the art highlights significant recent achievements that have been making these resources more intelligent and closer to the user needs. However, we are still far from an overall implementation of the vision, which is hindered by three major issues. The first one is the limited capability of a large part of the resources distributed within the shop floor to automatically interpret the exchanged information in a meaningful manner (semantic interoperability) (Atzori, Iera, & Morabito, 2010). This issue is mainly due to the high heterogeneity of data model formats adopted by the different resources used within the shop floor (Modoni, Doukas, Terkaj, Sacco, & Mourtzis, 2016). Another open issue is the lack of efficient methods to fully virtualize the physical resources (Rosen, von Wichert, Lo, & Bettenhausen, 2015), since only pairing physical resource with its digital counterpart that abstracts the complexity of the real world, it is possible to augment communication and collaboration capabilities of the physical component. The third issue is a side effect of the ongoing technological ICT evolutions affecting all the manufacturing companies and consists in the continuous growth of the number of threats and vulnerabilities, which can both jeopardize the cybersecurity of the overall manufacturing system (Wells, Camelio, Williams, & White, 2014). For this reason, aspects related with cyber-security should be considered at the early stage of the design of any ICT solution, in order to prevent potential threats and vulnerabilities. All three of the above mentioned open issues have been addressed in this research work with the aim to explore and identify a precise, secure and efficient model of collaboration among the production resources distributed within the shop floor. This document illustrates main outcomes of the research, focusing mainly on the Virtual Integrative Manufacturing Framework for resources Interaction (VICKI), a potential reference architecture for a middleware application enabling semantic-based cooperation among manufacturing resources. Specifically, this framework provides a technological and service-oriented infrastructure offering an event-driven mechanism that dynamically propagates the changing factors to the interested devices. The proposed system supports the coexistence and combination of physical components and their virtual counterparts in a network of interacting collaborative elements in constant connection, thus allowing to bring back the manufacturing system to a cooperative Cyber-physical Production System (CPPS) (Monostori, 2014). Within this network, the information coming from the productive chain can be promptly and seamlessly shared, distributed and understood by any actor operating in such a context. In order to overcome the problem of the limited interoperability among the connected resources, the framework leverages a common data model based on the Semantic Web technologies (SWT) (Berners-Lee, Hendler, & Lassila, 2001). The model provides a shared understanding on the vocabulary adopted by the distributed resources during their knowledge exchange. In this way, this model allows to integrate heterogeneous data streams into a coherent semantically enriched scheme that represents the evolution of the factory objects, their context and their smart reactions to all kind of situations. The semantic model is also machine-interpretable and re-usable. In addition to modeling, the virtualization of the overall manufacturing system is empowered by the adoption of an agent-based modeling, which contributes to hide and abstract the control functions complexity of the cooperating entities, thus providing the foundations to achieve a flexible and reconfigurable system. Finally, in order to mitigate the risk of internal and external attacks against the proposed infrastructure, it is explored the potential of a strategy based on the analysis and assessment of the manufacturing systems cyber-security aspects integrated into the context of the organization’s business model. To test and validate the proposed framework, a demonstration scenarios has been identified, which are thought to represent different significant case studies of the factory’s life cycle. To prove the correctness of the approach, the validation of an instance of the framework is carried out within a real case study. Moreover, as for data intensive systems such as the manufacturing system, the quality of service (QoS) requirements in terms of latency, efficiency, and scalability are stringent, an evaluation of these requirements is needed in a real case study by means of a defined benchmark, thus showing the impact of the data storage, of the connected resources and of their requests

    An integrative framework for cooperative production resources in smart manufacturing

    Get PDF
    Under the push of Industry 4.0 paradigm modern manufacturing companies are dealing with a significant digital transition, with the aim to better address the challenges posed by the growing complexity of globalized businesses (Hermann, Pentek, & Otto, Design principles for industrie 4.0 scenarios, 2016). One basic principle of this paradigm is that products, machines, systems and business are always connected to create an intelligent network along the entire factory\u2019s value chain. According to this vision, manufacturing resources are being transformed from monolithic entities into distributed components, which are loosely coupled and autonomous but nevertheless provided of the networking and connectivity capabilities enabled by the increasingly widespread Industrial Internet of Things technology. Under these conditions, they become capable of working together in a reliable and predictable manner, collaborating among themselves in a highly efficient way. Such a mechanism of synergistic collaboration is crucial for the correct evolution of any organization ranging from a multi-cellular organism to a complex modern manufacturing system (Moghaddam & Nof, 2017). Specifically of the last scenario, which is the field of our study, collaboration enables involved resources to exchange relevant information about the evolution of their context. These information can be in turn elaborated to make some decisions, and trigger some actions. In this way connected resources can modify their structure and configuration in response to specific business or operational variations (Alexopoulos, Makris, Xanthakis, Sipsas, & Chryssolouris, 2016). Such a model of \u201csocial\u201d and context-aware resources can contribute to the realization of a highly flexible, robust and responsive manufacturing system, which is an objective particularly relevant in the modern factories, as its inclusion in the scope of the priority research lines for the H2020 three-year period 2018-2020 can demonstrate (EFFRA, 2016). Interesting examples of these resources are self-organized logistics which can react to unexpected changes occurred in production or machines capable to predict failures on the basis of the contextual information and then trigger adjustments processes autonomously. This vision of collaborative and cooperative resources can be realized with the support of several studies in various fields ranging from information and communication technologies to artificial intelligence. An update state of the art highlights significant recent achievements that have been making these resources more intelligent and closer to the user needs. However, we are still far from an overall implementation of the vision, which is hindered by three major issues. The first one is the limited capability of a large part of the resources distributed within the shop floor to automatically interpret the exchanged information in a meaningful manner (semantic interoperability) (Atzori, Iera, & Morabito, 2010). This issue is mainly due to the high heterogeneity of data model formats adopted by the different resources used within the shop floor (Modoni, Doukas, Terkaj, Sacco, & Mourtzis, 2016). Another open issue is the lack of efficient methods to fully virtualize the physical resources (Rosen, von Wichert, Lo, & Bettenhausen, 2015), since only pairing physical resource with its digital counterpart that abstracts the complexity of the real world, it is possible to augment communication and collaboration capabilities of the physical component. The third issue is a side effect of the ongoing technological ICT evolutions affecting all the manufacturing companies and consists in the continuous growth of the number of threats and vulnerabilities, which can both jeopardize the cybersecurity of the overall manufacturing system (Wells, Camelio, Williams, & White, 2014). For this reason, aspects related with cyber-security should be considered at the early stage of the design of any ICT solution, in order to prevent potential threats and vulnerabilities. All three of the above mentioned open issues have been addressed in this research work with the aim to explore and identify a precise, secure and efficient model of collaboration among the production resources distributed within the shop floor. This document illustrates main outcomes of the research, focusing mainly on the Virtual Integrative Manufacturing Framework for resources Interaction (VICKI), a potential reference architecture for a middleware application enabling semantic-based cooperation among manufacturing resources. Specifically, this framework provides a technological and service-oriented infrastructure offering an event-driven mechanism that dynamically propagates the changing factors to the interested devices. The proposed system supports the coexistence and combination of physical components and their virtual counterparts in a network of interacting collaborative elements in constant connection, thus allowing to bring back the manufacturing system to a cooperative Cyber-physical Production System (CPPS) (Monostori, 2014). Within this network, the information coming from the productive chain can be promptly and seamlessly shared, distributed and understood by any actor operating in such a context. In order to overcome the problem of the limited interoperability among the connected resources, the framework leverages a common data model based on the Semantic Web technologies (SWT) (Berners-Lee, Hendler, & Lassila, 2001). The model provides a shared understanding on the vocabulary adopted by the distributed resources during their knowledge exchange. In this way, this model allows to integrate heterogeneous data streams into a coherent semantically enriched scheme that represents the evolution of the factory objects, their context and their smart reactions to all kind of situations. The semantic model is also machine-interpretable and re-usable. In addition to modeling, the virtualization of the overall manufacturing system is empowered by the adoption of an agent-based modeling, which contributes to hide and abstract the control functions complexity of the cooperating entities, thus providing the foundations to achieve a flexible and reconfigurable system. Finally, in order to mitigate the risk of internal and external attacks against the proposed infrastructure, it is explored the potential of a strategy based on the analysis and assessment of the manufacturing systems cyber-security aspects integrated into the context of the organization\u2019s business model. To test and validate the proposed framework, a demonstration scenarios has been identified, which are thought to represent different significant case studies of the factory\u2019s life cycle. To prove the correctness of the approach, the validation of an instance of the framework is carried out within a real case study. Moreover, as for data intensive systems such as the manufacturing system, the quality of service (QoS) requirements in terms of latency, efficiency, and scalability are stringent, an evaluation of these requirements is needed in a real case study by means of a defined benchmark, thus showing the impact of the data storage, of the connected resources and of their requests
    • …
    corecore