2,197 research outputs found

    Flora robotica -- An Architectural System Combining Living Natural Plants and Distributed Robots

    Full text link
    Key to our project flora robotica is the idea of creating a bio-hybrid system of tightly coupled natural plants and distributed robots to grow architectural artifacts and spaces. Our motivation with this ground research project is to lay a principled foundation towards the design and implementation of living architectural systems that provide functionalities beyond those of orthodox building practice, such as self-repair, material accumulation and self-organization. Plants and robots work together to create a living organism that is inhabited by human beings. User-defined design objectives help to steer the directional growth of the plants, but also the system's interactions with its inhabitants determine locations where growth is prohibited or desired (e.g., partitions, windows, occupiable space). We report our plant species selection process and aspects of living architecture. A leitmotif of our project is the rich concept of braiding: braids are produced by robots from continuous material and serve as both scaffolds and initial architectural artifacts before plants take over and grow the desired architecture. We use light and hormones as attraction stimuli and far-red light as repelling stimulus to influence the plants. Applied sensors range from simple proximity sensing to detect the presence of plants to sophisticated sensing technology, such as electrophysiology and measurements of sap flow. We conclude by discussing our anticipated final demonstrator that integrates key features of flora robotica, such as the continuous growth process of architectural artifacts and self-repair of living architecture.Comment: 16 pages, 12 figure

    Combining a hierarchical task network planner with a constraint satisfaction solver for assembly operations involving routing problems in a multi-robot context

    Get PDF
    This work addresses the combination of a symbolic hierarchical task network planner and a constraint satisfaction solver for the vehicle routing problem in a multi-robot context for structure assembly operations. Each planner has its own problem domain and search space, and the article describes how both planners interact in a loop sharing information in order to improve the cost of the solutions. The vehicle routing problem solver gives an initial assignment of parts to robots, making the distribution based on the distance among parts and robots, trying also to maximize the parallelism of the future assembly operations evaluating during the process the dependencies among the parts assigned to each robot. Then, the hierarchical task network planner computes a scheduling for the given assignment and estimates the cost in terms of time spent on the structure assembly. This cost value is then given back to the vehicle routing problem solver as feedback to compute a better assignment, closing the loop and repeating again the whole process. This interaction scheme has been tested with different constraint satisfaction solvers for the vehicle routing problem. The article presents simulation results in a scenario with a team of aerial robots assembling a structure, comparing the results obtained with different configurations of the vehicle routing problem solver and showing the suitability of using this approach.Unión Europea ARCAS FP7-ICT-287617Unión Europea H2020-ICT-644271Unión europea H2020-ICT-73166

    Design and development of a pole climbing surveillance robot

    No full text
    The cost of installing, monitoring and servicing a fixed camera system can be high and not all areas are in need of constant surveying. The increase in crime in urban areas emphasizes the need for a more effective and efficient surveillance system, as a result could lead to fewer crimes. A temporary surveillance unit which is able to climb to gain an elevated view has great potential for both military and civilian application. This paper highlights how the patent pending climbing robotic system (PC-101) was developed to be used by London’s Metropolitan Police Forensic Department for analysing outdoor crime scenes especially that related to car accidents. When cars are involved in accidents in the Metropolitan area, depending on the scale of the incident, the road generally has to be shut off to traffic if there are serious casualties. Elevated images are required for cases which may be taken to court, which then the images are then used as evidence, therefore regulations on the quality and perspectives of the image have to be met. By climbing a range of existing street furniture such as street lamp post, a temporary platform eliminates the use of larger special vehicle which struggles to get to the crime scene as well as cuts down the duration of the road closure. 98% of London street lamps in the Metropolitan area are constructed out of steel structures which make the use of magnetic wheels for locomotion an ideal solution to the climbing problem. Once remote controlled to the top of the lamp post, the PC-101 makes use of its actuated camera arm/gimbal to take the required shot, which can be seen on the ground control unit. A surveillance tool of this sort can be used for many applications which include crowd/riot control, crime scene investigations, monitoring hostile environments and even the monitoring of nature within urban environment

    Influence of self-disassembly of bridges on collective flow characteristics of swarm robots in a single-lane and periodic system with a gap

    Full text link
    Inspired by the living bridges formed by ants, swarm robots have been developed to self-assemble bridges to span gaps and self-disassemble them. Self-disassembly of bridges may increase the transport efficiency of swarm robots by increasing the number of moving robots, and also may decrease the efficiency by causing gaps to reappear. Our aim is to elucidate the influence of self-disassembly of bridges on the collective flow characteristics of swarm robots in a single-lane and periodic system with a gap. In the system, robots span and cross the gap by self-assembling a single-layer bridge. We consider two scenarios in which self-disassembling bridges is prevented (prevent-scenario) or allowed (allow-scenario). We represent the horizontal movement of robots with a typical car-following model, and simply model the actions of robots for self-assembling and self-disassembling bridges. Numerical simulations have revealed the following results. Flow-density diagrams in both the scenarios shift to the higher-density region as the gap length increases. When density is low, allow-scenario exhibits the steady state of repeated self-assembly and self-disassembly of bridges. If density is extremely low, flow in this state is greater than flow in prevent-scenario owing to the increase in the number of robots moving horizontally. Otherwise, flow in this state is smaller than flow in prevent-scenario. Besides, flow in this state increases monotonically with respect to the velocity of robots in joining and leaving bridges. Thus, self-disassembling bridges is recommended for only extremely low-density conditions in periodic systems. This study contributes to the development of the collective dynamics of self-driven particles that self-assemble structures, and stirs the dynamics with other self-assembled structures, such as ramps, chains, and towers.Comment: 13 pages, 9 figure

    SAFER: Search and Find Emergency Rover

    Get PDF
    When disaster strikes and causes a structure to collapse, it poses a unique challenge to search and rescue teams as they assess the situation and search for survivors. Currently there are very few tools that can be used by these teams to aid them in gathering important information about the situation that allow members to stay at a safe distance. SAFER, Search and Find Emergency Rover, is an unmanned, remotely operated vehicle that can provide early reconnaissance to search and rescue teams so they may have more information to prepare themselves for the dangers that lay inside the wreckage. Over the past year, this team has restored a bare, non-operational chassis inherited from Roverwerx 2012 into a rugged and operational rover with increased functionality and reliability. SAFER uses a 360-degree camera to deliver real time visual reconnaissance to the operator who can remain safely stationed on the outskirts of the disaster. With strong drive motors providing enough torque to traverse steep obstacles and enough power to travel at up to 3 ft/s, SAFER can cover ground quickly and effectively over its 1-3 hour battery life, maximizing reconnaissance for the team. Additionally, SAFER contains 3 flashing beacons that can be dropped by the operator in the event a victim is found so that when team members do enter the scene they may easily locate victims. In the future, other teams may wish to improve upon this iteration by adding thermal imaging, air quality sensors, and potentially a robotic arm with a camera that can see in spaces too small for the entire rover to enter

    Modular Self-Reconfigurable Robot Systems

    Get PDF
    The field of modular self-reconfigurable robotic systems addresses the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology. Modular self-reconfigurable systems have the promise of making significant technological advances to the field of robotics in general. Their promise of high versatility, high value, and high robustness may lead to a radical change in automation. Currently, a number of researchers have been addressing many of the challenges. While some progress has been made, it is clear that many challenges still exist. By illustrating several of the outstanding issues as grand challenges that have been collaboratively written by a large number of researchers in this field, this article has shown several of the key directions for the future of this growing fiel

    Design and development of wall climbing robot

    Get PDF
    This research work presents the design of a robot capable of climbing vertical and rough planes, such as stucco walls. Such a capacity offers imperative non military person and military preferences, for example, observation, perception, look and recover and actually for diversion and amusements. The robot's locomotion is performed using rack and pinion mechanism and adhesion to wall is performed by sticking using suction cups. The detailed design is modelled and fabrication is performed. It utilizes two legs, each with two degrees of freedom. And a central box containing the required mechanisms to perform the locomotion and adhesion is designed to carry any device to perform works on wall. A model of the robot is fabricated in a workshop using general tools. This model show how the mechanisms in the robot will work and how they are assembled together

    Architecture for planning and execution of missions with fleets of unmanned vehicles

    Get PDF
    Esta tesis presenta contribuciones en el campo de la planificación automática y la programación de tareas, la rama de la inteligencia artificial que se ocupa de la realización de estrategias o secuencias de acciones típicamente para su ejecución por parte de vehículos no tripulados, robots autónomos y/o agentes inteligentes. Cuando se intenta alcanzar un objetivo determinado, la cooperación puede ser un aspecto clave. La complejidad de algunas tareas requiere la cooperación entre varios agentes. Mas aún, incluso si una tarea es lo suficientemente simple para ser llevada a cabo por un único agente, puede usarse la cooperación para reducir el coste total de la misma. Para realizar tareas complejas que requieren interacción física con el mundo real, los vehículos no tripulados pueden ser usados como agentes. En los últimos años se han creado y utilizado una gran diversidad de plataformas no tripuladas, principalmente vehículos que pueden ser dirigidos sin un humano a bordo, tanto en misiones civiles como militares. En esta tesis se aborda la aplicación de planificación simbólica de redes jerárquicas de tareas (HTN planning, por sus siglas en inglés) en la resolución de problemas de enrutamiento de vehículos (VRP, por sus siglas en inglés) [18], en dominios que implican múltiples vehículos no tripulados de capacidades heterogéneas que deben cooperar para alcanzar una serie de objetivos específicos. La planificación con redes jerárquicas de tareas describe dominios utilizando una descripción que descompone conjuntos de tareas en subconjuntos más pequeños de subtareas gradualmente, hasta obtener tareas del más bajo nivel que no pueden ser descompuestas y se consideran directamente ejecutables. Esta jerarquía es similar al modo en que los humanos razonan sobre los problemas, descomponiéndolos en subproblemas según el contexto, y por lo tanto suelen ser fáciles de comprender y diseñar. Los problemas de enrutamiento de vehículos son una generalización del problema del viajante (TSP, por sus siglas en inglés). La resolución del problema del viajante consiste en encontrar la ruta más corta posible que permite visitar una lista de ciudades, partiendo y acabando en la misma ciudad. Su generalización, el problema de enrutamiento de vehículos, consiste en encontrar el conjunto de rutas de longitud mínima que permite cubrir todas las ciudades con un determinado número de vehículos. Ambos problemas cuentan con una fuerte componente combinatoria para su resolución, especialmente en el caso del VRP, por lo que su presencia en dominios que van a ser tratados con un planificador HTN clásico supone un gran reto. Para la aplicación de un planificador HTN en la resolución de problemas de enrutamiento de vehículos desarrollamos dos métodos. En el primero de ellos presentamos un sistema de optimización de soluciones basado en puntuaciones, que nos permite una nueva forma de conexión entre un software especializado en la resolución del VRP con el planificador HTN. Llamamos a este modo de conexión el método desacoplado, puesto que resolvemos la componente combinatoria del problema de enrutamiento de vehículos mediante un solucionador específico que se comunica con el planificador HTN y le suministra la información necesaria para continuar con la descomposición de tareas. El segundo método consiste en mejorar el planificador HTN utilizado para que sea capaz de resolver el problema de enrutamiento de vehículos de la mejor forma posible sin tener que depender de módulos de software externos. Llamamos a este modo el método acoplado. Con este motivo hemos desarrollado un nuevo planificador HTN que utiliza un algoritmo de búsqueda distinto del que se utiliza normalmente en planificadores de este tipo. Esta tesis presenta nuevas contribuciones en el campo de la planificación con redes jerárquicas de tareas para la resolución de problemas de enrutamiento de vehículos. Se aplica una nueva forma de conexión entre dos planificadores independientes basada en un sistema de cálculo de puntuaciones que les permite colaborar en la optimización de soluciones, y se presenta un nuevo planificador HTN con un algoritmo de búsqueda distinto al comúnmente utilizado. Se muestra la aplicación de estos dos métodos en misiones civiles dentro del entorno de los Proyectos ARCAS y AEROARMS financiados por la Comisión Europea y se presentan extensos resultados de simulación para comprobar la validez de los dos métodos propuestos.This thesis presents contributions in the field of automated planning and scheduling, the branch of artificial intelligence that concerns the realization of strategies or action sequences typically for execution by unmanned vehicles, autonomous robots and/or intelligent agents. When trying to achieve certain goal, cooperation may be a key aspect. The complexity of some tasks requires the cooperation among several agents. Moreover, even if the task is simple enough to be carried out by a single agent, cooperation can be used to decrease the overall cost of the operation. To perform complex tasks that require physical interaction with the real world, unmanned vehicles can be used as agents. In the last years a great variety of unmanned platforms, mainly vehicles that can be driven without a human on board, have been developed and used both in civil and military missions. This thesis deals with the application of Hierarchical Task Network (HTN) planning in the resolution of vehicle routing problems (VRP) [18] in domains involving multiple heterogeneous unmanned vehicles that must cooperate to achieve specific goals. HTN planning describes problem domains using a description that decomposes set of tasks into subsets of smaller tasks and so on, obtaining low-level tasks that cannot be further decomposed and are supposed to be executable. The hierarchy resembles the way the humans reason about problems by decomposing them into sub-problems depending on the context and therefore tend to be easy to understand and design. Vehicle routing problems are a generalization of the travelling salesman problem (TSP). The TSP consists on finding the shortest path that connects all the cities from a list, starting and ending on the same city. The VRP consists on finding the set of minimal routes that cover all cities by using a specific number of vehicles. Both problems have a combinatorial nature, specially the VRP, that makes it very difficult to use a HTN planner in domains where these problems are present. Two approaches to use a HTN planner in domains involving the VRP have been tested. The first approach consists on a score-based optimization system that allows us to apply a new way of connecting a software specialized in the resolution of the VRP with the HTN planner. We call this the decoupled approach, as we tackle the combinatorial nature of the VRP by using a specialized solver that communicates with the HTN planner and provides all the required information to do the task decomposition. The second approach consists on improving and enhancing the HTN planner to be capable of solving the VRP without needing the use of an external software. We call this the coupled approach. For this reason, a new HTN planner that uses a different search algorithm from these commonly used in that type of planners has been developed and is presented in this work. This thesis presents new contributions in the field of hierarchical task network planning for the resolution of vehicle routing problem domains. A new way of connecting two independent planning systems based on a score calculation system that lets them cooperate in the optimization of the solutions is applied, and a new HTN planner that uses a different search algorithm from that usually used in other HTN planners is presented. These two methods are applied in civil missions in the framework of the ARCAS and AEROARMS Projects funded by the European Commission. Extensive simulation results are presented to test the validity of the two approaches
    corecore