10 research outputs found

    WSN operability during persistent attack execution

    Get PDF
    Wireless Sensor Networks (WSNs) are utilized in a number of critical infrastructures, e.g. healthcare, disaster and relief. In sensitive environments, it is vital to maintain the operability of the network in an effort to support the decision-making process that depends on the sensors’ observations. The network’s operability can be maintained if observations can reach the specified destination and also if the sensors have adequate energy resources. The operability is negatively affected by security attacks, such as the selective forward and the denial of service (DoS), that can be executed against the WSN. The attacks’ impact greatly depends on the attackers’ capabilities such as their knowledge and the number of malicious nodes they hold. Currently, the research community focuses on addressing casual attackers that don’t persist with their attack strategy. However, the proposed solutions cannot address persistent attackers that continue with their attack execution after the network has applied appropriate recovery countermeasures. Designing an adaptive recovery strategy is challenging as a number of issues need to be taken into consideration such as the network’s density, the number of malicious nodes and the persistent attack strategy. This research work formulates a persistent attack strategy and investigates the integration of different recovery countermeasures in WSNs. The evaluation results demonstrate that an adaptive recovery strategy can enhance the network’s recovery benefits, in terms of increased packet delivery and decreased energy consumption, and prolong its operability. Moreover, the observations made are envisioned to encourage new contributions in the area of adaptive intrusion recovery in WSNs

    A novel intrusion detection framework for wireless sensor networks

    Get PDF
    Abstract Vehicle cloud is a new idea that uses the benefits of wireless sensor networks (WSNs) and the concept of cloud computing to provide better services to the community. It is important to secure a sensor network to achieve better performance of the vehicle cloud. Wireless sensor networks are a soft target for intruders or adversaries to launch lethal attacks in its present configuration. In this paper, a novel intrusion detection framework is proposed for securing wireless sensor networks from routing attacks. The proposed system works in a distributed environment to detect intrusions by collaborating with the neighboring nodes. It works in two modes: online prevention allows safeguarding from those abnormal nodes that are already declared as malicious while offline detection finds those nodes that are being compromised by an adversary during the next epoch of time. Simulation results show that the proposed specification-based detection scheme performs extremely well and achieves high intrusion detection rate and low false positive rate

    Survey on Mechanisms to detect and mitigate the impact of Sinkhole Attack in Wireless Sensor Networks

    Get PDF
    Abstract Sinkhole attack is an active attack, launched in a Wireles

    Situation aware intrusion recovery policy in WSNs

    Get PDF
    Wireless Sensor Networks (WSNs) have been gaining tremendous research attention the last few years as they support a broad range of applications in the context of the Internet of Things. WSN-driven applications greatly depend on the sensors’ observations to support decision-making and respond accordingly to reported critical events. In case of compromisation, it is vital to recover compromised WSN services and continue to operate as expected. To achieve an effective restoration of compromised WSN services, sensors should be equipped with the logic to take recovery decisions and self-heal. Self-healing is challenging as sensors should be aware of a variety of aspects in order to take effective decisions and maximize the recovery benefits. So far situation awareness has not been actively investigated in an intrusion recovery context. This research work formulates situation aware intrusion recovery policy design guidelines in order to drive the design of new intrusion recovery solutions that are operated by an adaptable policy. An adaptable intrusion recovery policy is presented taking into consideration the proposed design guidelines. The evaluation results demonstrate that the proposed policy can address advanced attack strategies and aid the sensors to recover the network’s operation under different attack situations and intrusion recovery requirements

    Intrusion Prevention and Detection in Wireless Sensor Networks

    Full text link
    The broadcast nature of the transmission medium in wireless sensor networks makes information more vulnerable than in wired applications. In this dissertation we first propose a distributed, deterministic key management protocol designed to satisfy authentication and confidentiality, without the need of a key distribution center. Next we propose Scatter, a secure code authentication scheme for efficient reprogramming sensor networks. Scatter avoids the use of Elliptic Key Cryptography and manages to surpass all previous attempts for secure code dissemination in terms of energy consumption and time efficiency. Next we introduce the problem of intrusion detection in sensor networks. We define the problem formally based on a generic system model and we prove a necessary and sufficient condition for successful detection of the attacker. Finally we present the architecture and implementation of an intrusion detection system which is based on a distributed architecture and it is lightweight enough to run on the nodes

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide

    Review of Path Selection Algorithms with Link Quality and Critical Switch Aware for Heterogeneous Traffic in SDN

    Get PDF
    Software Defined Networking (SDN) introduced network management flexibility that eludes traditional network architecture. Nevertheless, the pervasive demand for various cloud computing services with different levels of Quality of Service requirements in our contemporary world made network service provisioning challenging. One of these challenges is path selection (PS) for routing heterogeneous traffic with end-to-end quality of service support specific to each traffic class. The challenge had gotten the research community\u27s attention to the extent that many PSAs were proposed. However, a gap still exists that calls for further study. This paper reviews the existing PSA and the Baseline Shortest Path Algorithms (BSPA) upon which many relevant PSA(s) are built to help identify these gaps. The paper categorizes the PSAs into four, based on their path selection criteria, (1) PSAs that use static or dynamic link quality to guide PSD, (2) PSAs that consider the criticality of switch in terms of an update operation, FlowTable limitation or port capacity to guide PSD, (3) PSAs that consider flow variabilities to guide PSD and (4) The PSAs that use ML optimization in their PSD. We then reviewed and compared the techniques\u27 design in each category against the identified SDN PSA design objectives, solution approach, BSPA, and validation approaches. Finally, the paper recommends directions for further research

    Modeling and Implementation of Wireless Sensor Networks for Logistics Applications

    Get PDF
    Logistics has experienced a long time of developments and improvements based on the advanced vehicle technologies, transportation systems, traffic network extension and logistics processes. In the last decades, the complexity has increased significantly and this has created complex logistics networks over multiple continents. Because of the close cooperation, these logistics networks are highly dependent on each other in sharing and processing the logistics information. Every customer has many suppliers and vice versa. The conventional centralized control continues but reaches some limitations such as the different distribution of suppliers, the complexity and flexibility of processing orders or the dynamics of the logistic objects. In order to overcome these disadvantages, the paradigm of autonomous logistics is proposed and promises a better technical solution for current logistics systems. In autonomous logistics, the decision making is shifted toward the logistic objects which are defined as material items (e.g., vehicles, containers) or immaterial items (e.g., customer orders) of a networked logistics system. These objects have the ability to interact with each other and make decisions according to their own objectives. In the technical aspect, with the rapid development of innovative sensor technology, namely Wireless Sensor Networks (WSNs), each element in the network can self-organize and interact with other elements for information transmission. The attachment of an electronic sensor element into a logistic object will create an autonomous environment in both the communication and the logistic domain. With this idea, the requirements of logistics can be fulfilled; for example, the monitoring data can be precise, comprehensive and timely. In addition, the goods flow management can be transferred to the information logistic object management, which is easier by the help of information technologies. However, in order to transmit information between these logistic objects, one requirement is that a routing protocol is necessary. The Opportunistic relative Distance-Enabled Uni-cast Routing (ODEUR ) protocol which is proposed and investigated in this thesis shows that it can be used in autonomous environments like autonomous logistics. Moreover, the support of mobility, multiple sinks and auto-connection in this protocol enhances the dynamics of logistic objects. With a general model which covers a range from low-level issues to high-level protocols, many services such as real time monitoring of environmental conditions, context-aware applications and localization make the logistic objects (embedded with sensor equipment) more advanced in information communication and data processing. The distributed management service in each sensor node allows the flexible configuration of logistic items at any time during the transportation. All of these integrated features introduce a new technical solution for smart logistic items and intelligent transportation systems. In parallel, a management system, WSN data Collection and Management System (WiSeCoMaSys), is designed to interact with the deployed Wireless Sensor Networks. This tool allows the user to easily manipulate the sensor networks remotely. With its rich set of features such as real time data monitoring, data analysis and visualization, per-node management, and alerts, this tool helps both developers and users in the design and deployment of a sensor network. In addition, an analytical model is developed for comparison with the results from simulations and experiments. Focusing on the use of probability theory to model the network links, this model considers several important factors such as packet reception rate and network traffic which are used in the simulation and experiment parts. Moreover, the comparison between simulation, experiment and analytical results is also carried out to estimate the accuracy of the design and make several improvements of the simulation accuracy. Finally, all of the above parts are integrated in one unique system. This system is verified by both simulations in logistic scenarios (e.g., harbors, warehouses and containers) and experiments. The results show that the proposed model and protocol have a good packet delivery rate, little memory requirements and low delay. Accordingly, this system design is practical and applicable in logistics
    corecore