822 research outputs found

    To Draw or Not to Draw: Recognizing Stroke-Hover Intent in Gesture-Free Bare-Hand Mid-Air Drawing Tasks

    Get PDF
    Over the past several decades, technological advancements have introduced new modes of communication with the computers, introducing a shift from traditional mouse and keyboard interfaces. While touch based interactions are abundantly being used today, latest developments in computer vision, body tracking stereo cameras, and augmented and virtual reality have now enabled communicating with the computers using spatial input in the physical 3D space. These techniques are now being integrated into several design critical tasks like sketching, modeling, etc. through sophisticated methodologies and use of specialized instrumented devices. One of the prime challenges in design research is to make this spatial interaction with the computer as intuitive as possible for the users. Drawing curves in mid-air with fingers, is a fundamental task with applications to 3D sketching, geometric modeling, handwriting recognition, and authentication. Sketching in general, is a crucial mode for effective idea communication between designers. Mid-air curve input is typically accomplished through instrumented controllers, specific hand postures, or pre-defined hand gestures, in presence of depth and motion sensing cameras. The user may use any of these modalities to express the intention to start or stop sketching. However, apart from suffering with issues like lack of robustness, the use of such gestures, specific postures, or the necessity of instrumented controllers for design specific tasks further result in an additional cognitive load on the user. To address the problems associated with different mid-air curve input modalities, the presented research discusses the design, development, and evaluation of data driven models for intent recognition in non-instrumented, gesture-free, bare-hand mid-air drawing tasks. The research is motivated by a behavioral study that demonstrates the need for such an approach due to the lack of robustness and intuitiveness while using hand postures and instrumented devices. The main objective is to study how users move during mid-air sketching, develop qualitative insights regarding such movements, and consequently implement a computational approach to determine when the user intends to draw in mid-air without the use of an explicit mechanism (such as an instrumented controller or a specified hand-posture). By recording the user’s hand trajectory, the idea is to simply classify this point as either hover or stroke. The resulting model allows for the classification of points on the user’s spatial trajectory. Drawing inspiration from the way users sketch in mid-air, this research first specifies the necessity for an alternate approach for processing bare hand mid-air curves in a continuous fashion. Further, this research presents a novel drawing intent recognition work flow for every recorded drawing point, using three different approaches. We begin with recording mid-air drawing data and developing a classification model based on the extracted geometric properties of the recorded data. The main goal behind developing this model is to identify drawing intent from critical geometric and temporal features. In the second approach, we explore the variations in prediction quality of the model by improving the dimensionality of data used as mid-air curve input. Finally, in the third approach, we seek to understand the drawing intention from mid-air curves using sophisticated dimensionality reduction neural networks such as autoencoders. Finally, the broad level implications of this research are discussed, with potential development areas in the design and research of mid-air interactions

    Move, hold and touch: A framework for Tangible gesture interactive systems

    Get PDF
    © 2015 by the authors. Technology is spreading in our everyday world, and digital interaction beyond the screen, with real objects, allows taking advantage of our natural manipulative and communicative skills. Tangible gesture interaction takes advantage of these skills by bridging two popular domains in Human-Computer Interaction, tangible interaction and gestural interaction. In this paper, we present the Tangible Gesture Interaction Framework (TGIF) for classifying and guiding works in this field. We propose a classification of gestures according to three relationships with objects: move, hold and touch. Following this classification, we analyzed previous work in the literature to obtain guidelines and common practices for designing and building new tangible gesture interactive systems. We describe four interactive systems as application examples of the TGIF guidelines and we discuss the descriptive, evaluative and generative power of TGIF

    Continuous Smartphone Authentication using Wristbands

    Get PDF
    Many users find current smartphone authentication methods (PINs, swipe patterns) to be burdensome, leading them to weaken or disable the authentication. Although some phones support methods to ease the burden (such as fingerprint readers), these methods require active participation by the user and do not verify the user’s identity after the phone is unlocked. We propose CSAW, a continuous smartphone authentication method that leverages wristbands to verify that the phone is in the hands of its owner. In CSAW, users wear a wristband (a smartwatch or a fitness band) with built-in motion sensors, and by comparing the wristband’s motion with the phone’s motion, CSAW continuously produces a score indicating its confidence that the person holding (and using) the phone is the person wearing the wristband. This score provides the foundation for a wide range of authentication decisions (e.g., unlocking phone, deauthentication, or limiting phone access). Through two user studies (N=27,11) we evaluated CSAW’s accuracy, usability, and security. Our experimental evaluation demonstrates that CSAW was able to conduct initial authentication with over 99% accuracy and continuous authentication with over 96.5% accuracy

    Designing wearable interfaces for blind people

    Get PDF
    Tese de mestrado, Engenharia Informática (Arquitectura, Sistemas e Redes de Computadores), Universidade de Lisboa, faculdade de Ciências, 2015Hoje em dia os dispositivos com ecrã táctil, estão cada vez mais onipresentes. Até recentemente, a maioria dos ecrãs sensíveis ao toque forneciam poucos recursos de acessibilidade para deficientes visuais, deixando-os inutilizáveis. Sendo uma tecnologia tão presente no nosso quotidiano, como em telemóveis e tablets. Estes dispositivos são cada vez mais essenciais para a nossa vida, uma vez que, guardam muita informação pessoal, por exemplo, o pagamento através carteiras eletrónicas. A falta de acessibilidade deste tipo de ecrãs devem-se ao facto de estas interfaces serem baseadas no que os utilizadores veem no ecrã e em tocar no conteúdo apresentado neste. Isso torna-se num grande problema quando uma pessoa deficiente visual tenta usar estas interfaces. No mercado existem algumas soluções mas são quase todas baseadas em retorno áudio. Esta solução não é a melhor quando se trata de informação pessoal que a pessoa deseja manter privada. Por exemplo quando um utilizador está num autocarro e recebe uma mensagem, esta é lida por um leitor de ecrã através das colunas do dispositivo. Esta solução é prejudicial para a privacidade do utilizador, pois todas a pessoas `a sua volta irão ouvir o conteúdo da mensagem. Uma solução para este problema, poderá ser a utilização de vibração e de teclas físicas, que retiram a necessidade da utilização de leitores de ecrã. Contudo, para a navegação em menus a problemática mantém-se. Uma maneira de resolver este problema é através da utilização de uma interface baseada em gestos. Este tipo de interface é uma forma flexível e intuitiva de interação com este dispositivos. Até hoje, muitas abordagens têm vindo a apresentar soluções, no entanto não resolvem todos os pontos referidos. De uma maneira ou de outra estas abordagens terão de ser complementadas com outros dispositivos. Guerreiro e colegas (2012), apresentaram um protótipo que possibilita a leitura texto através de vibração, mas todo o impacto de uma utilização no dia a dia não é tido em conta. Um outro estudo realizado por Myung-Chul Cho (2002) apresenta um par de luvas para escrita codificada pelo alfabeto Braile, contudo não é testado para uma utilização com integração de uma componente de leitura, sem ser o retorno áudio. Dois outros estudos destacam-se, relativamente à utilização de gestos para navegação no dispositivo. Ruiz (2011), efetuou uma elicitação de gestos no ar, no entanto, eles não incluem pessoas invisuais no estudo, o que poderá levar à exclusão de tais utilizadores. Outro estudo apresentado por Kane (2011), inclui pessoas invisuais e destina-se a interações com gestos mas exigindo contacto físico com os ecrãs tácteis. A abordagem apresentada neste estudo integra as melhores soluções apresentadas num único dispositivo. O nosso objectivo principal é tornar os dispositivos de telemóveis mais acessíveis a pessoas invisuais, de forma serem integrados no seu quotidiano. Para isso, desenvolvemos uma interface baseada num par de luvas. O utilizador pode usá-las e com elas ler e escrever mensagens e ainda fazer gestos para outras tarefas. Este par de luvas aproveita o conhecimento sobre Braille por parte dos utilizadores para ler e escrever informação textual. Para a característica de leitura instalámos seis motores de vibração nos dedos da luva, no dedo indicador, no dedo do meio e no dedo anelar, de ambas as mãos. Estes motores simulam a configuração das teclas de uma máquina de escrever Braille, por exemplo, a Perkins Brailler. Para a parte de escrita, instalámos botões de pressão na ponta destes mesmos dedos, sendo cada um representante de um ponto de uma célula de Braille. Para a detecção de gestos optámos por uma abordagem através de um acelerómetro. Este encontra-se colocado nas costas da mão da luva. Para uma melhor utilização a luva é composta por duas camadas, e desta forma é possível instalar todos os componente entre as duas camadas de tecido, permitindo ao utilizador calçar e descalçar as luvas sem se ter que preocupar com os componentes eletrónicos. A construção das luvas assim como todos os testes realizados tiveram a participação de um grupo de pessoas invisuais, alunos e professores, da Fundação Raquel e Martin Sain. Para avaliarmos o desempenho do nosso dispositivo por invisuais realizámos alguns teste de recepcão (leitura) e de envio de mensagens (escrita). No teste de leitura foi realizado com um grupo apenas de pessoas invisuais. O teste consistiu em, receber letras em Braille, onde o utilizador replicava as vibrações sentidas, com os botões das luvas. Para isso avaliámos as taxas de reconhecimento de caracteres. Obtivemos uma média de 31 %, embora estes resultados sejam altamente dependentes das habilidades dos utilizadores. No teste de escrita, foi pedido uma letra ao utilizador e este escrevia em braille utilizando as luvas. O desempenho nesta componente foi em média 74 % de taxa de precisão. A maioria dos erros durante este teste estão ligados a erros, onde a diferença entre a palavra inicial e a escrita pelo utilizador, é de apenas um dedo. Estes testes foram bastante reveladores, relativamente à possível utilização destas luvas por pessoas invisuais. Indicaram-nos que os utilizadores devem ser treinados previamente para serem maximizados os resultados, e que pode ser necessário um pouco de experiencia com o dispositivo. O reconhecimento de gestos permite ao utilizador executar várias tarefas com um smartphone, tais como, atender/rejeitar uma chamada e navegar em menus. Para avaliar que gestos os utilizadores invisuais e normovisuais sugerem para a execução de tarefas em smartphones, realizámos um estudo de elicitação. Este estudo consiste em pedir aos utilizadores que sugiram gestos para a realização de tarefas. Descobrimos que a maioria dos gestos inventados pelos participantes tendem a ser físicos, em contexto, discreto e simples, e que utilizam apenas um ´unico eixo espacial. Concluímos também que existe um consenso, entre utilizadores, para todas as tarefas propostas. Além disso, o estudo de elicitação revelou que as pessoas invisuais preferem gestos mais simples, opondo-se a uma preferência por gestos mais complexos por parte de pessoas normovisuais. Sendo este um dispositivo que necessita de treino para reconhecimento de gestos, procurámos saber qual o tipo de treino é mais indicado para a sua utilização. Com os resultados obtidos no estudo de elicitação, comparámos treinos dos utilizadores individuais, treinos entre as das populações (invisuais e normovisuais) e um treino com ambas as populações (global). Descobrimos que um treino personalizado, ou seja, feito pelo próprio utilizador, é muito mais eficaz que um treino da população e um treino global. O facto de o utilizador poder enviar e receber mensagens, sem estar dependente de vários dispositivos e/ou aplicações contorna, as tão levantadas, questões de privacidade. Com o mesmo dispositivo o utilizador pode, ainda, navegar nos menus do seu smartphone, através de gestos simples e intuitivos. Os nossos resultados sugerem que será possível a utilização de um dispositivo wearable, no seio da comunidade invisual. Com o crescimento exponencial do mercado wearable e o esforço que a comunidade académica está a colocar nas tecnologias de acessibilidade, ainda existe uma grande margem para melhorar. Com este projeto, espera-se que os dispositivos portáteis de apoio irão desempenhar um papel importante na integração social das pessoas com deficiência, criando com isto uma sociedade mais igualitária e justa.Nowadays touch screens are ubiquitous, present in almost all modern devices. Most touch screens provide few accessibility features for blind people, leaving them partly unusable. There are some solutions, based on audio feedback, that help blind people to use touch screens in their daily tasks. The problem with those solutions raises privacy issues, since the content on screen is transmitted through the device speakers. Also, these screen readers make the interaction slow, and they are not easy to use. The main goal of this project is to develop a new wearable interface that allows blind people to interact with smartphones. We developed a pair of gloves that is capable to recognise mid-air gestures, and also allows the input and output of text. To evaluate the usability of input and output, we conducted a user study to assess character recognition and writing performance. Character recognition rates were highly user-dependent, and writing performance showed some problems, mostly related to one-finger issues. Then, we conducted an elicitation study to assess what type of gestures blind and sighted people suggest. Sighted people suggested more complex gestures, compared with blind people. However, all the gestures tend to be physical, in-context, discrete and simple, and use only a single axis. We also found that a training based on the user’s gestures is better for recognition accuracy. Nevertheless, the input and output text components still require new approaches to improve users performance. Still, this wearable interface seems promising for simple actions that do not require cognitive load. Overall, our results suggest that we are on track to make possible blind people interact with mobile devices in daily life

    Resonating Experiences of Self and Others enabled by a Tangible Somaesthetic Design

    Get PDF
    Digitalization is penetrating every aspect of everyday life including a human's heart beating, which can easily be sensed by wearable sensors and displayed for others to see, feel, and potentially "bodily resonate" with. Previous work in studying human interactions and interaction designs with physiological data, such as a heart's pulse rate, have argued that feeding it back to the users may, for example support users' mindfulness and self-awareness during various everyday activities and ultimately support their wellbeing. Inspired by Somaesthetics as a discipline, which focuses on an appreciation of the living body's role in all our experiences, we designed and explored mobile tangible heart beat displays, which enable rich forms of bodily experiencing oneself and others in social proximity. In this paper, we first report on the design process of tangible heart displays and then present results of a field study with 30 pairs of participants. Participants were asked to use the tangible heart displays during watching movies together and report their experience in three different heart display conditions (i.e., displaying their own heart beat, their partner's heart beat, and watching a movie without a heart display). We found, for example that participants reported significant effects in experiencing sensory immersion when they felt their own heart beats compared to the condition without any heart beat display, and that feeling their partner's heart beats resulted in significant effects on social experience. We refer to resonance theory to discuss the results, highlighting the potential of how ubiquitous technology could utilize physiological data to provide resonance in a modern society facing social acceleration.Comment: 18 page
    corecore