1,014 research outputs found

    The influence of topology and information diffusion on networked game dynamics

    Get PDF
    This thesis studies the influence of topology and information diffusion on the strategic interactions of agents in a population. It shows that there exists a reciprocal relationship between the topology, information diffusion and the strategic interactions of a population of players. In order to evaluate the influence of topology and information flow on networked game dynamics, strategic games are simulated on populations of players where the players are distributed in a non-homogeneous spatial arrangement. The initial component of this research consists of a study of evolution of the coordination of strategic players, where the topology or the structure of the population is shown to be critical in defining the coordination among the players. Next, the effect of network topology on the evolutionary stability of strategies is studied in detail. Based on the results obtained, it is shown that network topology plays a key role in determining the evolutionary stability of a particular strategy in a population of players. Then, the effect of network topology on the optimum placement of strategies is studied. Using genetic optimisation, it is shown that the placement of strategies in a spatially distributed population of players is crucial in maximising the collective payoff of the population. Exploring further the effect of network topology and information diffusion on networked games, the non-optimal or bounded rationality of players is modelled using topological and directed information flow of the network. Based on the topologically distributed bounded rationality model, it is shown that the scale-free and small-world networks emerge in randomly connected populations of sub-optimal players. Thus, the topological and information theoretic interpretations of bounded rationality suggest the topology, information diffusion and the strategic interactions of socio-economical structures are cyclically interdependent

    Uncertainty-Aware Prediction Validator in Deep Learning Models for Cyber-Physical System Data

    Get PDF
    The use of Deep learning in Cyber-Physical Systems (CPSs) is gaining popularity due to its ability to bring intelligence to CPS behaviors. However, both CPSs and deep learning have inherent uncertainty. Such uncertainty, if not handled adequately, can lead to unsafe CPS behavior. The first step toward addressing such uncertainty in deep learning is to quantify uncertainty. Hence, we propose a novel method called NIRVANA (uNcertaInty pRediction ValidAtor iN Ai) for prediction validation based on uncertainty metrics. To this end, we first employ prediction-time Dropout-based Neural Networks to quantify uncertainty in deep learning models applied to CPS data. Second, such quantified uncertainty is taken as the input to predict wrong labels using a support vector machine, with the aim of building a highly discriminating prediction validator model with uncertainty values. In addition, we investigated the relationship between uncertainty quantification and prediction performance and conducted experiments to obtain optimal dropout ratios. We conducted all the experiments with four real-world CPS datasets. Results show that uncertainty quantification is negatively correlated to prediction performance of a deep learning model of CPS data. Also, our dropout ratio adjustment approach is effective in reducing uncertainty of correct predictions while increasing uncertainty of wrong predictions.publishedVersio

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor

    A Critical Review of Robustness in Power Grids using Complex Networks Concepts

    Get PDF
    Complex network theory for analyzing robustness in energy gridsThis paper reviews the most relevant works that have investigated robustness in power grids using Complex Networks (CN) concepts. In this broad field there are two different approaches. The first one is based solely on topological concepts, and uses metrics such as mean path length, clustering coefficient, efficiency and betweenness centrality, among many others. The second, hybrid approach consists of introducing (into the CN framework) some concepts from Electrical Engineering (EE) in the effort of enhancing the topological approach, and uses novel, more efficient electrical metrics such as electrical betweenness, net-ability, and others. There is however a controversy about whether these approaches are able to provide insights into all aspects of real power grids. The CN community argues that the topological approach does not aim to focus on the detailed operation, but to discover the unexpected emergence of collective behavior, while part of the EE community asserts that this leads to an excessive simplification. Beyond this open debate it seems to be no predominant structure (scale-free, small-world) in high-voltage transmission power grids, the vast majority of power grids studied so far. Most of them have in common that they are vulnerable to targeted attacks on the most connected nodes and robust to random failure. In this respect there are only a few works that propose strategies to improve robustness such as intentional islanding, restricted link addition, microgrids and smart grids, for which novel studies suggest that small-world networks seem to be the best topology.This work has been partially supported by the project TIN2014-54583-C2-2-R from the Spanish Ministerial Commission of Science and Technology (MICYT), by the project S2013/ICE-2933 from Comunidad de Madrid and by the project FUTURE GRIDS-2020 from the Basque Government
    • …
    corecore