8,766 research outputs found

    Taxonomy of Technological IT Outsourcing Risks: Support for Risk Identification and Quantification

    Get PDF
    The past decade has seen an increasing interest in IT outsourcing as it promises companies many economic benefits. In recent years, IT paradigms, such as Software-as-a-Service or Cloud Computing using third-party services, are increasingly adopted. Current studies show that IT security and data privacy are the dominant factors affecting the perceived risk of IT outsourcing. Therefore, we explicitly focus on determining the technological risks related to IT security and quality of service characteristics associated with IT outsourcing. We conducted an extensive literature review, and thoroughly document the process in order to reach high validity and reliability. 149 papers have been evaluated based on a review of the whole content and out of the finally relevant 68 papers, we extracted 757 risk items. Using a successive refinement approach, which involved reduction of similar items and iterative re-grouping, we establish a taxonomy with nine risk categories for the final 70 technological risk items. Moreover, we describe how the taxonomy can be used to support the first two phases of the IT risk management process: risk identification and quantification. Therefore, for each item, we give parameters relevant for using them in an existing mathematical risk quantification model

    Security in Cloud Computing: Evaluation and Integration

    Get PDF
    Au cours de la dernière décennie, le paradigme du Cloud Computing a révolutionné la manière dont nous percevons les services de la Technologie de l’Information (TI). Celui-ci nous a donné l’opportunité de répondre à la demande constamment croissante liée aux besoins informatiques des usagers en introduisant la notion d’externalisation des services et des données. Les consommateurs du Cloud ont généralement accès, sur demande, à un large éventail bien réparti d’infrastructures de TI offrant une pléthore de services. Ils sont à même de configurer dynamiquement les ressources du Cloud en fonction des exigences de leurs applications, sans toutefois devenir partie intégrante de l’infrastructure du Cloud. Cela leur permet d’atteindre un degré optimal d’utilisation des ressources tout en réduisant leurs coûts d’investissement en TI. Toutefois, la migration des services au Cloud intensifie malgré elle les menaces existantes à la sécurité des TI et en crée de nouvelles qui sont intrinsèques à l’architecture du Cloud Computing. C’est pourquoi il existe un réel besoin d’évaluation des risques liés à la sécurité du Cloud durant le procédé de la sélection et du déploiement des services. Au cours des dernières années, l’impact d’une efficace gestion de la satisfaction des besoins en sécurité des services a été pris avec un sérieux croissant de la part des fournisseurs et des consommateurs. Toutefois, l’intégration réussie de l’élément de sécurité dans les opérations de la gestion des ressources du Cloud ne requiert pas seulement une recherche méthodique, mais aussi une modélisation méticuleuse des exigences du Cloud en termes de sécurité. C’est en considérant ces facteurs que nous adressons dans cette thèse les défis liés à l’évaluation de la sécurité et à son intégration dans les environnements indépendants et interconnectés du Cloud Computing. D’une part, nous sommes motivés à offrir aux consommateurs du Cloud un ensemble de méthodes qui leur permettront d’optimiser la sécurité de leurs services et, d’autre part, nous offrons aux fournisseurs un éventail de stratégies qui leur permettront de mieux sécuriser leurs services d’hébergements du Cloud. L’originalité de cette thèse porte sur deux aspects : 1) la description innovatrice des exigences des applications du Cloud relativement à la sécurité ; et 2) la conception de modèles mathématiques rigoureux qui intègrent le facteur de sécurité dans les problèmes traditionnels du déploiement des applications, d’approvisionnement des ressources et de la gestion de la charge de travail au coeur des infrastructures actuelles du Cloud Computing. Le travail au sein de cette thèse est réalisé en trois phases.----------ABSTRACT: Over the past decade, the Cloud Computing paradigm has revolutionized the way we envision IT services. It has provided an opportunity to respond to the ever increasing computing needs of the users by introducing the notion of service and data outsourcing. Cloud consumers usually have online and on-demand access to a large and distributed IT infrastructure providing a plethora of services. They can dynamically configure and scale the Cloud resources according to the requirements of their applications without becoming part of the Cloud infrastructure, which allows them to reduce their IT investment cost and achieve optimal resource utilization. However, the migration of services to the Cloud increases the vulnerability to existing IT security threats and creates new ones that are intrinsic to the Cloud Computing architecture, thus the need for a thorough assessment of Cloud security risks during the process of service selection and deployment. Recently, the impact of effective management of service security satisfaction has been taken with greater seriousness by the Cloud Service Providers (CSP) and stakeholders. Nevertheless, the successful integration of the security element into the Cloud resource management operations does not only require methodical research, but also necessitates the meticulous modeling of the Cloud security requirements. To this end, we address throughout this thesis the challenges to security evaluation and integration in independent and interconnected Cloud Computing environments. We are interested in providing the Cloud consumers with a set of methods that allow them to optimize the security of their services and the CSPs with a set of strategies that enable them to provide security-aware Cloud-based service hosting. The originality of this thesis lies within two aspects: 1) the innovative description of the Cloud applications’ security requirements, which paved the way for an effective quantification and evaluation of the security of Cloud infrastructures; and 2) the design of rigorous mathematical models that integrate the security factor into the traditional problems of application deployment, resource provisioning, and workload management within current Cloud Computing infrastructures. The work in this thesis is carried out in three phases

    A Reference Model to Support Risk Identification in Cloud Networks

    Get PDF
    The rising adoption of cloud computing and increasing interconnections among its actors lead to the emergence of network-like structures and new associated risks. A major obstacle for addressing these risks is the lack of transparency concerning the underlying network structure and the dissemination of risks therein. Existing research does not consider the risk perspective in a cloud network’s context. We address this research gap with the construction of a reference model that can display such networks and therefore supports risk identification. We evaluate the reference model through real-world examples and interviews with industry experts and demonstrate its applicability. The model provides a better understanding of cloud networks and causalities between related risks. These insights can be used to develop appropriate risk management strategies in cloud networks. The reference model sets a basis for future risk quantification approaches as well as for the design of (IT) tools for risk analysis

    Bid-Centric Cloud Service Provisioning

    Full text link
    Bid-centric service descriptions have the potential to offer a new cloud service provisioning model that promotes portability, diversity of choice and differentiation between providers. A bid matching model based on requirements and capabilities is presented that provides the basis for such an approach. In order to facilitate the bidding process, tenders should be specified as abstractly as possible so that the solution space is not needlessly restricted. To this end, we describe how partial TOSCA service descriptions allow for a range of diverse solutions to be proposed by multiple providers in response to tenders. Rather than adopting a lowest common denominator approach, true portability should allow for the relative strengths and differentiating features of cloud service providers to be applied to bids. With this in mind, we describe how TOSCA service descriptions could be augmented with additional information in order to facilitate heterogeneity in proposed solutions, such as the use of coprocessors and provider-specific services

    An adaptive trust based service quality monitoring mechanism for cloud computing

    Get PDF
    Cloud computing is the newest paradigm in distributed computing that delivers computing resources over the Internet as services. Due to the attractiveness of cloud computing, the market is currently flooded with many service providers. This has necessitated the customers to identify the right one meeting their requirements in terms of service quality. The existing monitoring of service quality has been limited only to quantification in cloud computing. On the other hand, the continuous improvement and distribution of service quality scores have been implemented in other distributed computing paradigms but not specifically for cloud computing. This research investigates the methods and proposes mechanisms for quantifying and ranking the service quality of service providers. The solution proposed in this thesis consists of three mechanisms, namely service quality modeling mechanism, adaptive trust computing mechanism and trust distribution mechanism for cloud computing. The Design Research Methodology (DRM) has been modified by adding phases, means and methods, and probable outcomes. This modified DRM is used throughout this study. The mechanisms were developed and tested gradually until the expected outcome has been achieved. A comprehensive set of experiments were carried out in a simulated environment to validate their effectiveness. The evaluation has been carried out by comparing their performance against the combined trust model and QoS trust model for cloud computing along with the adapted fuzzy theory based trust computing mechanism and super-agent based trust distribution mechanism, which were developed for other distributed systems. The results show that the mechanisms are faster and more stable than the existing solutions in terms of reaching the final trust scores on all three parameters tested. The results presented in this thesis are significant in terms of making cloud computing acceptable to users in verifying the performance of the service providers before making the selection

    Trustee: A Trust Management System for Fog-enabled Cyber Physical Systems

    Get PDF
    In this paper, we propose a lightweight trust management system (TMS) for fog-enabled cyber physical systems (Fog-CPS). Trust computation is based on multi-factor and multi-dimensional parameters, and formulated as a statistical regression problem which is solved by employing random forest regression model. Additionally, as the Fog-CPS systems could be deployed in open and unprotected environments, the CPS devices and fog nodes are vulnerable to numerous attacks namely, collusion, self-promotion, badmouthing, ballot-stuffing, and opportunistic service. The compromised entities can impact the accuracy of trust computation model by increasing/decreasing the trust of other nodes. These challenges are addressed by designing a generic trust credibility model which can countermeasures the compromise of both CPS devices and fog nodes. The credibility of each newly computed trust value is evaluated and subsequently adjusted by correlating it with a standard deviation threshold. The standard deviation is quantified by computing the trust in two configurations of hostile environments and subsequently comparing it with the trust value in a legitimate/normal environment. Our results demonstrate that credibility model successfully countermeasures the malicious behaviour of all Fog-CPS entities i.e. CPS devices and fog nodes. The multi-factor trust assessment and credibility evaluation enable accurate and precise trust computation and guarantee a dependable Fog-CPS system
    • …
    corecore