1,481 research outputs found

    SensX: About Sensing and Assessment of Complex Human Motion

    Full text link
    The great success of wearables and smartphone apps for provision of extensive physical workout instructions boosts a whole industry dealing with consumer oriented sensors and sports equipment. But with these opportunities there are also new challenges emerging. The unregulated distribution of instructions about ambitious exercises enables unexperienced users to undertake demanding workouts without professional supervision which may lead to suboptimal training success or even serious injuries. We believe, that automated supervision and realtime feedback during a workout may help to solve these issues. Therefore we introduce four fundamental steps for complex human motion assessment and present SensX, a sensor-based architecture for monitoring, recording, and analyzing complex and multi-dimensional motion chains. We provide the results of our preliminary study encompassing 8 different body weight exercises, 20 participants, and more than 9,220 recorded exercise repetitions. Furthermore, insights into SensXs classification capabilities and the impact of specific sensor configurations onto the analysis process are given.Comment: Published within the Proceedings of 14th IEEE International Conference on Networking, Sensing and Control (ICNSC), May 16th-18th, 2017, Calabria Italy 6 pages, 5 figure

    Data Quality and Reliability Assessment of Wearable EMG and IMU Sensor for Construction Activity Recognition

    Get PDF
    The workforce shortage is one of the significant problems in the construction industry. To overcome the challenges due to workforce shortage, various researchers have proposed wearable sensor-based systems in the area of construction safety and health. Although sensors provide rich and detailed information, not all sensors can be used for construction applications. This study evaluates the data quality and reliability of forearm electromyography (EMG) and inertial measurement unit (IMU) of armband sensors for construction activity classification. To achieve the proposed objective, the forearm EMG and IMU data collected from eight participants while performing construction activities such as screwing, wrenching, lifting, and carrying on two different days were used to analyze the data quality and reliability for activity recognition through seven different experiments. The results of these experiments show that the armband sensor data quality is comparable to the conventional EMG and IMU sensors with excellent relative and absolute reliability between trials for all the five activities. The activity classification results were highly reliable, with minimal change in classification accuracies for both the days. Moreover, the results conclude that the combined EMG and IMU models classify activities with higher accuracies compared to individual sensor models

    Generalized Activity Assessment computed fully distributed within a Wireless Body Area Network

    Get PDF
    Currently available wearables are usually based on a single sensor node with integrated capabilities for classifying different activities. The next generation of cooperative wearables could be able to identify not only activities, but also to evaluate them qualitatively using the data of several sensor nodes attached to the body, to provide detailed feedback for the improvement of the execution. Especially within the application domains of sports and health-care, such immediate feedback to the execution of body movements is crucial for (re-)learning and improving motor skills. To enable such systems for a broad range of activities, generalized approaches for human motion assessment within sensor networks are required. In this paper, we present a generalized trainable activity assessment chain (AAC) for the online assessment of periodic human activity within a wireless body area network. AAC evaluates the execution of separate movements of a prior trained activity on a fine-grained quality scale. We connect qualitative assessment with human knowledge by projecting the AAC on the hierarchical decomposition of motion performed by the human body as well as establishing the assessment on a kinematic evaluation of biomechanically distinct motion fragments. We evaluate AAC in a real-world setting and show that AAC successfully delimits the movements of correctly performed activity from faulty executions and provides detailed reasons for the activity assessment

    Wearable inertial sensors and range of motion metrics in physical therapy remote support

    Get PDF
    Abstract. The practice of physiotherapy diagnoses patient ailments which are often treated by the daily repetition of prescribed physiotherapeutic exercise. The effectiveness of the exercise regime is dependent on regular daily repetition of the regime and the correct execution of the prescribed exercises. Patients often have issues learning unfamiliar exercises and performing the exercise with good technique. This design science research study examines a back squat classifier design to appraise patient exercise regime away from the physiotherapy practice. The scope of the exercise appraisal is limited to one exercise, the back squat. Kinematic data captured with commercial inertial sensors is presented to a small group of physiotherapists to illustrate the potential of the technology to measure range of motion (ROM) for back squat appraisal. Opinions are considered from two fields of physiotherapy, general musculoskeletal and post-operative rehabilitation. While the exercise classifier is considered not suitable for post-operative rehabilitation, the opinions expressed for use in general musculoskeletal physiotherapy are positive. Kinematic data captured with gyroscope sensors in the sagittal plane is analysed with Matlab to develop a method for back squat exercise recognition and appraisal. The artefact, a back squat classifier with appraisal features is constructed from Matlab scripts which are proven to be effective with kinematic data from a novice athlete

    Generalized Activity Assessment computed fully distributed within a Wireless Body Area Network

    Get PDF
    Currently available wearables are usually based on a single sensor node with integrated capabilities for classifying different activities. The next generation of cooperative wearables could be able to identify not only activities, but also to evaluate them qualitatively using the data of several sensor nodes attached to the body, to provide detailed feedback for the improvement of the execution. Especially within the application domains of sports and health-care, such immediate feedback to the execution of body movements is crucial for (re-)learning and improving motor skills. To enable such systems for a broad range of activities, generalized approaches for human motion assessment within sensor networks are required. In this paper, we present a generalized trainable activity assessment chain (AAC) for the online assessment of periodic human activity within a wireless body area network. AAC evaluates the execution of separate movements of a prior trained activity on a fine-grained quality scale. We connect qualitative assessment with human knowledge by projecting the AAC on the hierarchical decomposition of motion performed by the human body as well as establishing the assessment on a kinematic evaluation of biomechanically distinct motion fragments. We evaluate AAC in a real-world setting and show that AAC successfully delimits the movements of correctly performed activity from faulty executions and provides detailed reasons for the activity assessment

    Sport Biomechanics Applications Using Inertial, Force, and EMG Sensors: A Literature Overview

    Get PDF
    In the last few decades, a number of technological developments have advanced the spread of wearable sensors for the assessment of human motion. These sensors have been also developed to assess athletes’ performance, providing useful guidelines for coaching, as well as for injury prevention. The data from these sensors provides key performance outcomes as well as more detailed kinematic, kinetic, and electromyographic data that provides insight into how the performance was obtained. From this perspective, inertial sensors, force sensors, and electromyography appear to be the most appropriate wearable sensors to use. Several studies were conducted to verify the feasibility of using wearable sensors for sport applications by using both commercially available and customized sensors. The present study seeks to provide an overview of sport biomechanics applications found from recent literature using wearable sensors, highlighting some information related to the used sensors and analysis methods. From the literature review results, it appears that inertial sensors are the most widespread sensors for assessing athletes’ performance; however, there still exist applications for force sensors and electromyography in this context. The main sport assessed in the studies was running, even though the range of sports examined was quite high. The provided overview can be useful for researchers, athletes, and coaches to understand the technologies currently available for sport performance assessment

    Development of a wearable free-weight exercise assistant

    Get PDF
    In this work, the effectiveness of a system that uses sinusoidal motion models based on acceleration and orientation data to assess the quality of individual freeweight exercise repetitions was explored. Two inertial measurement units, one on each wrist, were worn by participants while performing correct and incorrect repetitions based on five common mistakes. Data were analyzed and relevant signals per exercise were selected. Based on readings from correct repetitions, the sinusoidal motion models were developed. The models were then coupled into three different systems that were evaluated based on the accuracy of counting repetitions and on the predicted quality of the repetition. The results depend on the system being evaluated, on the number and type of selected signals, and on the exercise carried out. Acceleration and orientation signals, when used together, yield an acceptable performance. For exercises without rotations, the sole use of acceleration data produces unsatisfactory results. Further work needs to be done before such a system can be used as a training tool with the purpose of improving exercising technique and help prevent injuries In this work, the effectiveness of a system that uses sinusoidal motion models based on acceleration and orientation data to assess the quality of individual freeweight exercise repetitions was explored. Two inertial measurement units, one on each wrist, were worn by participants while performing correct and incorrect repetitions based on five common mistakes. Data were analyzed and relevant signals per exercise were selected. Based on readings from correct repetitions, the sinusoidal motion models were developed. The models were then coupled into three different systems that were evaluated based on the accuracy of counting repetitions and on the predicted quality of the repetition. The results depend on the system being evaluated, on the number and type of selected signals, and on the exercise carried out. Acceleration and orientation signals, when used together, yield an acceptable performance. For exercises without rotations, the sole use of acceleration data produces unsatisfactory results. Further work needs to be done before such a system can be used as a training tool with the purpose of improving exercising technique and help prevent injurie
    • …
    corecore