17,556 research outputs found

    Molecular access to multi-dimensionally encoded information

    Get PDF
    Polymer scientist have only recently realized that information storage on the molecular level is not only restricted to DNA-based systems. Similar encoding and decoding of data have been demonstrated on synthetic polymers that could overcome some of the drawbacks associated with DNA, such as the ability to make use of a larger monomer alphabet. This feature article describes some of the recent data storage strategies that were investigated, ranging from writing information on linear sequence-defined macromolecules up to layer-by-layer casted surfaces and QR codes. In addition, some strategies to increase storage density are elaborated and some trends regarding future perspectives on molecular data storage from the literature are critically evaluated. This work ends with highlighting the demand for new strategies setting up reliable solutions for future data management technologies

    Coding for Optimized Writing Rate in DNA Storage

    Get PDF
    A method for encoding information in DNA sequences is described. The method is based on the precisionresolution framework, and is aimed to work in conjunction with a recently suggested terminator-free template independent DNA synthesis method. The suggested method optimizes the amount of information bits per synthesis time unit, namely, the writing rate. Additionally, the encoding scheme studied here takes into account the existence of multiple copies of the DNA sequence, which are independently distorted. Finally, quantizers for various run-length distributions are designed

    Coding for Optimized Writing Rate in DNA Storage

    Get PDF
    A method for encoding information in DNA sequences is described. The method is based on the precision-resolution framework, and is aimed to work in conjunction with a recently suggested terminator-free template independent DNA synthesis method. The suggested method optimizes the amount of information bits per synthesis time unit, namely, the writing rate. Additionally, the encoding scheme studied here takes into account the existence of multiple copies of the DNA sequence, which are independently distorted. Finally, quantizers for various run-length distributions are designed.Comment: To appear in ISIT 202

    On Optimal Family of Codes for Archival DNA Storage

    Full text link
    DNA based storage systems received attention by many researchers. This includes archival and re-writable random access DNA based storage systems. In this work, we have developed an efficient technique to encode the data into DNA sequence by using non-linear families of ternary codes. In particular, we proposes an algorithm to encode data into DNA with high information storage density and better error correction using a sub code of Golay code. Theoretically, 115 exabytes (EB) data can be stored in one gram of DNA by our method.Comment: Supplementary file and the software DNA Cloud 2.0 is available at http://www.guptalab.org/dnacloud This is the preliminary version of the paper that appeared in Proceedings of IWSDA 2015, pp. 143--14

    DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization.

    Get PDF
    DNA has been employed to either store digital information or to perform parallel molecular computing. Relatively unexplored is the ability to combine DNA-based memory and logical operations in a single platform. Here, we show a DNA tri-level cell non-volatile memory system capable of parallel random-access writing of memory and bit shifting operations. A microchip with an array of individually addressable electrodes was employed to enable random access of the memory cells using electric fields. Three segments on a DNA template molecule were used to encode three data bits. Rapid writing of data bits was enabled by electric field-induced hybridization of fluorescently labeled complementary probes and the data bits were read by fluorescence imaging. We demonstrated the rapid parallel writing and reading of 8 (23) combinations of 3-bit memory data and bit shifting operations by electric field-induced strand displacement. Our system may find potential applications in DNA-based memory and computations
    corecore