1,793 research outputs found

    Functional divergence of microtubule-associated TPX2 family members in Arabidopsis thaliana

    Get PDF
    TPX2 (Targeting Protein for Xklp2) is an evolutionary conserved microtubule-associated protein important for microtubule nucleation and mitotic spindle assembly. The protein was described as an activator of the mitotic kinase Aurora A in humans and the Arabidopsis AURORA1 (AUR1) kinase. In contrast to animal genomes that encode only one TPX2 gene, higher plant genomes encode a family with several TPX2-LIKE gene members (TPXL). TPXL genes of Arabidopsis can be divided into two groups. Group A proteins (TPXL2, 3, 4, and 8) contain Aurora binding and TPX2_importin domains, while group B proteins (TPXL1, 5, 6, and 7) harbor an Xklp2 domain. Canonical TPX2 contains all the above-mentioned domains. We confirmed using in vitro kinase assays that the group A proteins contain a functional Aurora kinase binding domain. Transient expression of Arabidopsis TPX2-like proteins in Nicotiana benthamiana revealed preferential localization to microtubules and nuclei. Co-expression of AUR1 together with TPX2-like proteins changed the localization of AUR1, indicating that these proteins serve as targeting factors for Aurora kinases. Taken together, we visualize the various localizations of the TPX2-LIKE family in Arabidopsis as a proxy to their functional divergence and provide evidence of their role in the targeted regulation of AUR1 kinase activity

    Distinct expression and methylation patterns for genes with different fates following a single whole-genome duplication in flowering plants

    Get PDF
    For most sequenced flowering plants, multiple whole-genome duplications (WGDs) are found. Duplicated genes following WGD often have different fates that can quickly disappear again, be retained for long(er) periods, or subsequently undergo small-scale duplications. However, how different expression, epigenetic regulation, and functional constraints are associated with these different gene fates following a WGD still requires further investigation due to successive WGDs in angiosperms complicating the gene trajectories. In this study, we investigate lotus (Nelumbo nucifera), an angiosperm with a single WGD during the K–pg boundary. Based on improved intraspecific-synteny identification by a chromosome-level assembly, transcriptome, and bisulfite sequencing, we explore not only the fundamental distinctions in genomic features, expression, and methylation patterns of genes with different fates after a WGD but also the factors that shape post-WGD expression divergence and expression bias between duplicates. We found that after a WGD genes that returned to single copies show the highest levels and breadth of expression, gene body methylation, and intron numbers, whereas the long-retained duplicates exhibit the highest degrees of protein–protein interactions and protein lengths and the lowest methylation in gene flanking regions. For those long-retained duplicate pairs, the degree of expression divergence correlates with their sequence divergence, degree in protein–protein interactions, and expression level, whereas their biases in expression level reflecting subgenome dominance are associated with the bias of subgenome fractionation. Overall, our study on the paleopolyploid nature of lotus highlights the impact of different functional constraints on gene fate and duplicate divergence following a single WGD in plant

    Integrative Identification of Arabidopsis Mitochondrial Proteome and Its Function Exploitation through Protein Interaction Network

    Get PDF
    Mitochondria are major players on the production of energy, and host several key reactions involved in basic metabolism and biosynthesis of essential molecules. Currently, the majority of nucleus-encoded mitochondrial proteins are unknown even for model plant Arabidopsis. We reported a computational framework for predicting Arabidopsis mitochondrial proteins based on a probabilistic model, called Naive Bayesian Network, which integrates disparate genomic data generated from eight bioinformatics tools, multiple orthologous mappings, protein domain properties and co-expression patterns using 1,027 microarray profiles. Through this approach, we predicted 2,311 candidate mitochondrial proteins with 84.67% accuracy and 2.53% FPR performances. Together with those experimental confirmed proteins, 2,585 mitochondria proteins (named CoreMitoP) were identified, we explored those proteins with unknown functions based on protein-protein interaction network (PIN) and annotated novel functions for 26.65% CoreMitoP proteins. Moreover, we found newly predicted mitochondrial proteins embedded in particular subnetworks of the PIN, mainly functioning in response to diverse environmental stresses, like salt, draught, cold, and wound etc. Candidate mitochondrial proteins involved in those physiological acitivites provide useful targets for further investigation. Assigned functions also provide comprehensive information for Arabidopsis mitochondrial proteome

    Retention and integration of gene duplicates in eukaryotes

    Get PDF

    Minimal regulatory spaces in yeast genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The regulatory information encoded in the DNA of promoter regions usually enforces a minimal, non-zero distance between the coding regions of neighboring genes. However, the size of this minimal regulatory space is not generally known. In particular, it is unclear if minimal promoter size differs between species and between uni- and bi-directionally acting regulatory regions.</p> <p>Results</p> <p>Analyzing the genomes of 11 yeasts, we show that the lower size limit on promoter-containing regions is species-specific within a relatively narrow range (80-255 bp). This size limit applies equally to regions that initiate transcription on one or both strands, indicating that bi-directional promoters and uni-directional promoters are constrained similarly. We further find that young, species-specific regions are on average much longer than older regions, suggesting either a bias towards deletions or selection for genome compactness in yeasts. While the length evolution of promoter-less intergenic regions is well described by a simplistic, purely neutral model, regions containing promoters typically show an excess of unusually long regions. Regions flanked by divergently transcribed genes have a bi-modal length distribution, with short lengths found preferentially among older regions. These old, short regions likely harbor evolutionarily conserved bi-directionally active promoters. Surprisingly, some of the evolutionarily youngest regions in two of the eleven species (<it>S. cerevisiae </it>and <it>K. waltii</it>) are shorter than the lower limit observed in older regions.</p> <p>Conclusions</p> <p>The minimal chromosomal space required for transcriptional regulation appears to be relatively similar across yeast species, and is the same for uni-directional and bi-directional promoters. New intergenic regions created by genome rearrangements tend to evolve towards the more narrow size distribution found among older regions.</p

    The Nature of Protein Domain Evolution: Shaping the Interaction Network

    Get PDF
    The proteomes that make up the collection of proteins in contemporary organisms evolved through recombination and duplication of a limited set of domains. These protein domains are essentially the main components of globular proteins and are the most principal level at which protein function and protein interactions can be understood. An important aspect of domain evolution is their atomic structure and biochemical function, which are both specified by the information in the amino acid sequence. Changes in this information may bring about new folds, functions and protein architectures. With the present and still increasing wealth of sequences and annotation data brought about by genomics, new evolutionary relationships are constantly being revealed, unknown structures modeled and phylogenies inferred. Such investigations not only help predict the function of newly discovered proteins, but also assist in mapping unforeseen pathways of evolution and reveal crucial, co-evolving inter- and intra-molecular interactions. In turn this will help us describe how protein domains shaped cellular interaction networks and the dynamics with which they are regulated in the cell. Additionally, these studies can be used for the design of new and optimized protein domains for therapy. In this review, we aim to describe the basic concepts of protein domain evolution and illustrate recent developments in molecular evolution that have provided valuable new insights in the field of comparative genomics and protein interaction networks

    The importance of alternative splicing in adaptive evolution

    Get PDF
    Although alternative splicing is a ubiquitous co-transcriptional gene regulatory mechanism in plants, animals and fungi, its contribution to evolutionary transitions is understudied. Alternative splicing enables different mRNA isoforms to be generated from the same gene, expanding transcriptomic and thus proteomic diversity. While the role of gene expression variation in adaptive evolution is widely accepted, biologists still debate the functional impact of alternative isoforms on phenotype. In light of recent empirical research linking splice variation to ecological adaptations, we propose that alternative splicing is an important substrate for adaptive evolution and speciation, particularly at short timescales. In this article we synthesise what is known about the role of alternative splicing in adaptive evolution. We discuss the contribution of standing splice variation to phenotypic plasticity and how hybridisation can produce novel splice forms. Going forwards, we propose that alternative splicing be included as a standard analysis alongside gene expression analysis so we can better understand of how alternative splicing contributes to adaptive divergence at the micro- and macroevolutionary levels.Peer reviewe
    corecore