3,431 research outputs found

    Parallel hierarchical sampling:a general-purpose class of multiple-chains MCMC algorithms

    Get PDF
    This paper introduces the Parallel Hierarchical Sampler (PHS), a class of Markov chain Monte Carlo algorithms using several interacting chains having the same target distribution but different mixing properties. Unlike any single-chain MCMC algorithm, upon reaching stationarity one of the PHS chains, which we call the “mother” chain, attains exact Monte Carlo sampling of the target distribution of interest. We empirically show that this translates in a dramatic improvement in the sampler’s performance with respect to single-chain MCMC algorithms. Convergence of the PHS joint transition kernel is proved and its relationships with single-chain samplers, Parallel Tempering (PT) and variable augmentation algorithms are discussed. We then provide two illustrative examples comparing the accuracy of PHS with

    Scalable Inference for Markov Processes with Intractable Likelihoods

    Full text link
    Bayesian inference for Markov processes has become increasingly relevant in recent years. Problems of this type often have intractable likelihoods and prior knowledge about model rate parameters is often poor. Markov Chain Monte Carlo (MCMC) techniques can lead to exact inference in such models but in practice can suffer performance issues including long burn-in periods and poor mixing. On the other hand approximate Bayesian computation techniques can allow rapid exploration of a large parameter space but yield only approximate posterior distributions. Here we consider the combined use of approximate Bayesian computation (ABC) and MCMC techniques for improved computational efficiency while retaining exact inference on parallel hardware

    Minimising MCMC variance via diffusion limits, with an application to simulated tempering

    Get PDF
    We derive new results comparing the asymptotic variance of diffusions by writing them as appropriate limits of discrete-time birth-death chains which themselves satisfy Peskun orderings. We then apply our results to simulated tempering algorithms to establish which choice of inverse temperatures minimises the asymptotic variance of all functionals and thus leads to the most efficient MCMC algorithm.Comment: Published in at http://dx.doi.org/10.1214/12-AAP918 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Simulation in Statistics

    Full text link
    Simulation has become a standard tool in statistics because it may be the only tool available for analysing some classes of probabilistic models. We review in this paper simulation tools that have been specifically derived to address statistical challenges and, in particular, recent advances in the areas of adaptive Markov chain Monte Carlo (MCMC) algorithms, and approximate Bayesian calculation (ABC) algorithms.Comment: Draft of an advanced tutorial paper for the Proceedings of the 2011 Winter Simulation Conferenc
    corecore