4,244 research outputs found

    Optimizing Locally Differentially Private Protocols

    Full text link
    Protocols satisfying Local Differential Privacy (LDP) enable parties to collect aggregate information about a population while protecting each user's privacy, without relying on a trusted third party. LDP protocols (such as Google's RAPPOR) have been deployed in real-world scenarios. In these protocols, a user encodes his private information and perturbs the encoded value locally before sending it to an aggregator, who combines values that users contribute to infer statistics about the population. In this paper, we introduce a framework that generalizes several LDP protocols proposed in the literature. Our framework yields a simple and fast aggregation algorithm, whose accuracy can be precisely analyzed. Our in-depth analysis enables us to choose optimal parameters, resulting in two new protocols (i.e., Optimized Unary Encoding and Optimized Local Hashing) that provide better utility than protocols previously proposed. We present precise conditions for when each proposed protocol should be used, and perform experiments that demonstrate the advantage of our proposed protocols

    Towards Extending Noiseless Privacy -- Dependent Data and More Practical Approach

    Full text link
    In 2011 Bhaskar et al. pointed out that in many cases one can ensure sufficient level of privacy without adding noise by utilizing adversarial uncertainty. Informally speaking, this observation comes from the fact that if at least a part of the data is randomized from the adversary's point of view, it can be effectively used for hiding other values. So far the approach to that idea in the literature was mostly purely asymptotic, which greatly limited its adaptation in real-life scenarios. In this paper we aim to make the concept of utilizing adversarial uncertainty not only an interesting theoretical idea, but rather a practically useful technique, complementary to differential privacy, which is the state-of-the-art definition of privacy. This requires non-asymptotic privacy guarantees, more realistic approach to the randomness inherently present in the data and to the adversary's knowledge. In our paper we extend the concept proposed by Bhaskar et al. and present some results for wider class of data. In particular we cover the data sets that are dependent. We also introduce rigorous adversarial model. Moreover, in contrast to most of previous papers in this field, we give detailed (non-asymptotic) results which is motivated by practical reasons. Note that it required a modified approach and more subtle mathematical tools, including Stein method which, to the best of our knowledge, was not used in privacy research before. Apart from that, we show how to combine adversarial uncertainty with differential privacy approach and explore synergy between them to enhance the privacy parameters already present in the data itself by adding small amount of noise.Comment: Accepted to AsiaCCS 201

    Security and Privacy Issues in Deep Learning

    Full text link
    With the development of machine learning (ML), expectations for artificial intelligence (AI) technology have been increasing daily. In particular, deep neural networks have shown outstanding performance results in many fields. Many applications are deeply involved in our daily life, such as making significant decisions in application areas based on predictions or classifications, in which a DL model could be relevant. Hence, if a DL model causes mispredictions or misclassifications due to malicious external influences, then it can cause very large difficulties in real life. Moreover, training DL models involve an enormous amount of data and the training data often include sensitive information. Therefore, DL models should not expose the privacy of such data. In this paper, we review the vulnerabilities and the developed defense methods on the security of the models and data privacy under the notion of secure and private AI (SPAI). We also discuss current challenges and open issues

    Computational Differential Privacy from Lattice-based Cryptography

    Full text link
    The emerging technologies for large scale data analysis raise new challenges to the security and privacy of sensitive user data. In this work we investigate the problem of private statistical analysis of time-series data in the distributed and semi-honest setting. In particular, we study some properties of Private Stream Aggregation (PSA), first introduced by Shi et al. 2017. This is a computationally secure protocol for the collection and aggregation of data in a distributed network and has a very small communication cost. In the non-adaptive query model, a secure PSA scheme can be built upon any key-homomorphic weak pseudo-random function as shown by Valovich 2017, yielding security guarantees in the standard model which is in contrast to Shi et. al. We show that every mechanism which preserves (ϵ,δ)(\epsilon,\delta)-differential privacy in effect preserves computational (ϵ,δ)(\epsilon,\delta)-differential privacy when it is executed through a secure PSA scheme. Furthermore, we introduce a novel perturbation mechanism based on the symmetric Skellam distribution that is suited for preserving differential privacy in the distributed setting, and find that its performances in terms of privacy and accuracy are comparable to those of previous solutions. On the other hand, we leverage its specific properties to construct a computationally efficient prospective post-quantum protocol for differentially private time-series data analysis in the distributed model. The security of this protocol is based on the hardness of a new variant of the Decisional Learning with Errors (DLWE) problem. In this variant the errors are taken from the symmetric Skellam distribution. We show that this new variant is hard based on the hardness of the standard Learning with Errors (LWE) problem where the errors are taken from the discrete Gaussian distribution. Thus, we provide a variant of the LWE problem that is hard...Comment: arXiv admin note: substantial text overlap with arXiv:1507.0807

    Privacy-preserving Active Learning on Sensitive Data for User Intent Classification

    Full text link
    Active learning holds promise of significantly reducing data annotation costs while maintaining reasonable model performance. However, it requires sending data to annotators for labeling. This presents a possible privacy leak when the training set includes sensitive user data. In this paper, we describe an approach for carrying out privacy preserving active learning with quantifiable guarantees. We evaluate our approach by showing the tradeoff between privacy, utility and annotation budget on a binary classification task in a active learning setting.Comment: To appear at PAL: Privacy-Enhancing Artificial Intelligence and Language Technologies as part of the AAAI Spring Symposium Series (AAAI-SSS 2019

    An Efficient Fog-Assisted Unstable Sensor Detection Scheme with Privacy Preserved

    Full text link
    The Internet of Thing (IoT) has been a hot topic in both research community and industry. It is anticipated that in future IoT, an enormous number of sensors will collect the physical information every moment to enable the control center making better decisions to improve the quality of service (QoS). However, the sensors maybe faulty and thus generate inaccurate data which would compromise the decision making. To guarantee the QoS, the system should be able to detect faulty sensors so as to eliminate the damages of inaccurate data. Various faulty sensor detection mechanisms have been developed in the context of wireless sensor network (WSN). Some of them are only fit for WSN while the others would bring a communication burden to control center. To detect the faulty sensors for general IoT applications and save the communication resource at the same time, an efficient faulty sensor detection scheme is proposed in this paper. The proposed scheme takes advantage of fog computing to save the computation and communication resource of control center. To preserve the privacy of sensor data, the Paillier Cryptosystem is adopted in the fog computing. The batch verification technique is applied to achieve efficient authentication. The performance analyses are presented to demonstrate that the proposed detection scheme is able to conserve the communication resource of control center and achieve a high true positive ratio while maintaining an acceptable false positive ratio. The scheme could also withstand various security attacks and preserve data privacy.Comment: 11 pages, 5 figure

    Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing

    Full text link
    With the breakthroughs in deep learning, the recent years have witnessed a booming of artificial intelligence (AI) applications and services, spanning from personal assistant to recommendation systems to video/audio surveillance. More recently, with the proliferation of mobile computing and Internet-of-Things (IoT), billions of mobile and IoT devices are connected to the Internet, generating zillions Bytes of data at the network edge. Driving by this trend, there is an urgent need to push the AI frontiers to the network edge so as to fully unleash the potential of the edge big data. To meet this demand, edge computing, an emerging paradigm that pushes computing tasks and services from the network core to the network edge, has been widely recognized as a promising solution. The resulted new inter-discipline, edge AI or edge intelligence, is beginning to receive a tremendous amount of interest. However, research on edge intelligence is still in its infancy stage, and a dedicated venue for exchanging the recent advances of edge intelligence is highly desired by both the computer system and artificial intelligence communities. To this end, we conduct a comprehensive survey of the recent research efforts on edge intelligence. Specifically, we first review the background and motivation for artificial intelligence running at the network edge. We then provide an overview of the overarching architectures, frameworks and emerging key technologies for deep learning model towards training/inference at the network edge. Finally, we discuss future research opportunities on edge intelligence. We believe that this survey will elicit escalating attentions, stimulate fruitful discussions and inspire further research ideas on edge intelligence.Comment: Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang, "Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing," Proceedings of the IEE

    Price of Privacy in the Keynesian Beauty Contest

    Full text link
    The Keynesian Beauty Contest is a classical game in which strategic agents seek to both accurately guess the true state of the world as well as the average action of all agents. We study an augmentation of this game where agents are concerned about revealing their private information and additionally suffer a loss based on how well an observer can infer their private signals. We solve for an equilibrium of this augmented game and quantify the loss of social welfare as a result of agents acting to obscure their private information, which we call the 'price of privacy'. We analyze two versions of this this price: one from the perspective of the agents measuring their diminished ability to coordinate due to acting to obscure their information and another from the perspective of an aggregator whose statistical estimate of the true state of the world is of lower precision due to the agents adding random noise to their actions. We show that these quantities are high when agents care very strongly about protecting their personal information and low when the quality of the signals the agents receive is poor.Comment: 26 page

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Knowledge Transferring via Model Aggregation for Online Social Care

    Full text link
    The Internet and the Web are being increasingly used in proactive social care to provide people, especially the vulnerable, with a better life and services, and their derived social services generate enormous data. However, the strict protection of privacy makes user's data become an isolated island and limits the predictive performance of standalone clients. To enable effective proactive social care and knowledge sharing within intelligent agents, this paper develops a knowledge transferring framework via model aggregation. Under this framework, distributed clients perform on-device training, and a third-party server integrates multiple clients' models and redistributes to clients for knowledge transferring among users. To improve the generalizability of the knowledge sharing, we further propose a novel model aggregation algorithm, namely the average difference descent aggregation (AvgDiffAgg for short). In particular, to evaluate the effectiveness of the learning algorithm, we use a case study on the early detection and prevention of suicidal ideation, and the experiment results on four datasets derived from social communities demonstrate the effectiveness of the proposed learning method
    • …
    corecore