506 research outputs found

    Towards optimal advection using stretch-maximizing stream surfaces

    Get PDF
    We investigate a class of stream surfaces that expand in time as much as possible. Given a vector field, we look for seed curves that locally propagate in time in a stretch-maximizing manner, i.e., curves that infinitesimally expand most progressively. We show that such a curve is generically unique at every point in an incompressible flow and offers a very good initial guess for a stretch-maximizing stream surface. With the application of efficient fluid advection-diffusion in mind, we optimize fluid injection towards optimal advection and show several examples on benchmark datasets

    Nonlinear control of unsteady finite-amplitude perturbations in the Blasius boundary-layer flow

    Get PDF
    The present work provides an optimal control strategy, based on the nonlinear Navier–Stokes equations, aimed at hampering the rapid growth of unsteady finite-amplitude perturbations in a Blasius boundary-layer flow. A variational procedure is used to find the blowing and suction control law at the wall providing the maximum damping of the energy of a given perturbation at a given target time, with the final aim of leading the flow back to the laminar state. Two optimally growing finite-amplitude initial perturbations capable of leading very rapidly to transition have been used to initialize the flow. The nonlinear control procedure has been found able to drive such perturbations back to the laminar state, provided that the target time of the minimization and the region in which the blowing and suction is applied have been suitably chosen. On the other hand, an equivalent control procedure based on the linearized Navier–Stokes equations has been found much less effective, being not able to lead the flow to the laminar state when finite-amplitude disturbances are considered. Regions of strong sensitivity to blowing and suction have been also identified for the given initial perturbations: when the control is actuated in such regions, laminarization is also observed for a shorter extent of the actuation region. The nonlinear optimal blowing and suction law consists of alternating wall-normal velocity perturbations, which appear to modify the core flow structures by means of two distinct mechanisms: (i) a wall-normal velocity compensation at small times; (ii) a rotation-counterbalancing effect al larger times. Similar control laws have been observed for different target times, values of the cost parameter, and streamwise extents of the blowing and suction zone, meaning that these two mechanisms are robust features of the optimal control strategy, provided that the nonlinear effects are taken into account

    Computational methods and software for the design of inertial microfluidic flow sculpting devices

    Get PDF
    The ability to sculpt inertially flowing fluid via bluff body obstacles has enormous promise for applications in bioengineering, chemistry, and manufacturing within microfluidic devices. However, the computational difficulty inherent to full scale 3-dimensional fluid flow simulations makes designing and optimizing such systems tedious, costly, and generally tasked to computational experts with access to high performance resources. The goal of this work is to construct efficient models for the design of inertial microfluidic flow sculpting devices, and implement these models in freely available, user-friendly software for the broader microfluidics community. Two software packages were developed to accomplish this: uFlow and FlowSculpt . uFlow solves the forward problem in flow sculpting, that of predicting the net deformation from an arbitrary sequence of obstacles (pillars), and includes estimations of transverse mass diffusion and particles formed by optical lithography. FlowSculpt solves the more difficult inverse problem in flow sculpting, which is to design a flow sculpting device which produces a target flow shape. Each piece of software uses efficient, experimentally validated forward models developed within this work, which are applied to deep learning techniques to explore other routes to solving the inverse problem. The models are also highly modular, capable of incorporating new microfluidic components and flow physics to the design process. It is anticipated that the microfluidics community will integrate the tools developed here into their own research, and bring new designs, components, and applications to the inertial flow sculpting platform

    Vortex detection and tracking in massively separated and turbulent flows

    Get PDF
    The vortex produced at the leading edge of the wing, known as the leading edge vortex (LEV), plays an important role in enhancing or destroying aerodynamic force, especially lift, upon its formation or shedding during the flapping flight of birds and insects. In this thesis, we integrate multiple new and traditional vortex identification approaches to visualize and track the LEV dynamics during its shedding process. The study is carried out using a 2D simulation of a flat plate undergoing a 45 degree pitch-up maneuver. The Eulerian 1 function and criterion are used along with the Lagrangian coherent structures (LCS) analyses including the finite-time Lyapunov exponent (FTLE), the geodesic LCS, and the Lagrangian-Averaged Vorticity Deviation (LAVD). Each of \h{these} Lagrangian methods \h{is} applied at the centers and boundaries of the vortices to detect the vortex dynamics. The techniques enable the tracking of identifiable features in the flow organization using the FTLE-saddles and -saddles. The FTLE-saddle traces have shown potential to identify the timing and location of vortex shedding, more precisely than by only studying the vortex cores as identified by Eulerian techniques. The traces and the shedding times of the FTLE-saddles on the LEV boundary matches well with the plate lift fluctuation, and indicates a consistent timing of LEV formation, growth, shedding. The formation number and vortex shedding mechanisms are compared in the thesis with the shedding time and location by the FTLE-saddle, which validates the result of the FTLE-saddles and provide explanations of vortex shedding in different aspects (vortex strength and flow dynamics). The techniques are applied to more cases involving vortex dominated flows to explore and expand their application in providing insight of flow physics. For a set of experimental two-component PIV data in the wake of a purely pitching trapezoidal panel, the Lagrangian analysis of FTLE-saddle tracking identifies and tracks the vortex breakdown location with relatively less user interaction and provide a more direct and consistent analysis. For a simulation of wall-bounded turbulence in a channel flow, tracking FTLE-saddles shows that the average structure convection speed exhibits a similar trend as a previously published result based on velocity and pressure correlations, giving validity to the method. When these Lagrangian techniques are applied in a study of the evolution of an isolated hairpin vortex, it shows the connection between primary and secondary hairpin heads of their circulation and position, and the contribution to the generation of the secondary hairpin by the flow characteristics at the channel wall. The current method of tracking vortices yields insight into the behavior of the vortices in all of the diverse flows presented, highlighting the breadth of its potential application

    2010 program of study : swirling and swimming in turbulence

    Get PDF
    Swirling and Swimming in Turbulence was the theme at the 2010 GFD Program. Professors Glenn Flierl (M.I.T.), Antonello Provenzale (ISAC-CNR, Turin) and Jean-Luc Thiffeault (University of Wisconsin) were the principal lecturers. Together they navigated an elegant path through topics ranging from mixing protocols and efficiencies to ecological strategies, schooling and genetic development. The first ten chapters of this volume document these lectures, each prepared by pairs of this summer’s GFD fellows. Following on are the written reports of the fellows’ own research projects.Funding was provided by the Office of Naval Research under Contract No. N000-14-09-10844 and the National Science Foundation through Grant No. OCE 082463

    Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    Get PDF
    The only remote sensing technique capable of obtain- ing sea-ice thickness on basin-scale are satellite altime- ter missions, such as the 2010 launched CryoSat-2. It is equipped with a Ku-Band radar altimeter, which mea- sures the height of the ice surface above the sea level. This method requires highly accurate range measure- ments. During the CryoSat Validation Experiment (Cry- oVEx) 2011 in the Lincoln Sea, Cryosat-2 underpasses were accomplished with two aircraft, which carried an airborne laser-scanner, a radar altimeter and an electro- magnetic induction device for direct sea-ice thickness re- trieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard and thickness dis- tribution of airborne validation and CryoSat-2 measure- ments within the multi-year sea-ice region of the Lincoln Sea in spring, with respect to the penetration of the Ku- Band signal into the snow
    corecore