8 research outputs found

    A Virtual Infrastructure for Mitigating Typical Challenges in Sensor Networks

    Get PDF
    Sensor networks have their own distinguishing characteristics that set them apart from other types of networks. Typically, the sensors are deployed in large numbers and in random fashion and the resulting sensor network is expected to self-organize in support of the mission for which it was deployed. Because of the random deployment of sensors that are often scattered from an overflying aircraft, the resulting network is not easy to manage since the sensors do not know their location, do not know how to aggregate their sensory data and where and how to route the aggregated data. The limited energy budget available to sensors makes things much worse. To save their energy, sensors have to sleep and wake up asynchronously. However, while promoting energy awareness, these actions continually change the underlying network topology and make the basic network protocols more complex. Several techniques have been proposed in different areas of sensor networks. Most of these techniques attempt to solve one problem in isolation from the others, hence protocol designers have to face the same common challenges again and again. This, in turn, has a direct impact on the complexity of the proposed protocols and on energy consumption. Instead of using this approach we propose to construct a lightweight backbone that can help mitigate many of the typical challenges in sensor networks and allow the development of simpler network protocols. Our backbone construction protocol starts by tiling the area around each sink using identical regular hexagons. After that, the closest sensor to the center of each of these hexagons is determined—we refer to these sensors as backbone sensors. We define a ternary coordinate system to refer to hexagons. The resulting system provides a complete set of communication paths that can be used by any geographic routing technique to simplify data communication across the network. We show how the constructed backbone can help mitigate many of the typical challenges inherent to sensor networks. In addition to sensor localization, the network backbone provides an implicit clustering mechanism in which each hexagon represents a cluster mud the backbone sensor around its center represents the cluster head. As cluster heads, backbone sensors can be used to coordinate task assignment, workforce selection, and data aggregation for different sensing tasks. They also can be used to locally synchronize and adjust the duty cycle of non-backbone sensors in their neighborhood. Finally, we propose “Backbone Switching”, a technique that creates alternative backbones and periodically switches between them in order to balance energy consumption among sensors by distributing the additional load of being part of the backbone over larger number of sensors

    Biology-Inspired Approach for Communal Behavior in Massively Deployed Sensor Networks

    Get PDF
    Research in wireless sensor networks has accelerated rapidly in recent years. The promise of ubiquitous control of the physical environment opens the way for new applications that will redefine the way we live and work. Due to the small size and low cost of sensor devices, visionaries promise smart systems enabled by deployment of massive numbers of sensors working in concert. To date, most of the research effort has concentrated on forming ad hoc networks under centralized control, which is not scalable to massive deployments. This thesis proposes an alternative approach based on models inspired by biological systems and reports significant results based on this new approach. This perspective views sensor devices as autonomous organisms in a community interacting as part of an ecosystem rather than as nodes in a computing network. The networks that result from this design make local decisions based on local information in order for the network to achieve global goals, thus we must engineer for emergent behavior in wireless sensor networks. First we implemented a simulator based on cellular automata to be used in algorithm development and assessment. Then we developed efficient algorithms to exploit emergent behavior for finding the average of distributed values, synchronizing distributed clocks, and conducting distributed binary voting. These algorithms are shown to be convergent and efficient by analysis and simulation. Finally, an extension of this perspective is used and demonstrated to provide significant progress on the noise abatement problem for jet aircraft. Using local information and actions, optimal impedance values for an acoustic liner are determined in situ providing the basis for an adaptive noise abatement system that provides superior noise reduction compared with current technology and previous research efforts

    Annual report for the town of New Hampton, N.H. for the year ending December 31, 2003.

    Get PDF
    This is an annual report containing vital statistics for a town/city in the state of New Hampshire

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    corecore