1,694 research outputs found

    Image Registration of Lung CT Scans for Monitoring Disease Progression

    Get PDF

    Pulmonary Image Segmentation and Registration Algorithms: Towards Regional Evaluation of Obstructive Lung Disease

    Get PDF
    Pulmonary imaging, including pulmonary magnetic resonance imaging (MRI) and computed tomography (CT), provides a way to sensitively and regionally measure spatially heterogeneous lung structural-functional abnormalities. These unique imaging biomarkers offer the potential for better understanding pulmonary disease mechanisms, monitoring disease progression and response to therapy, and developing novel treatments for improved patient care. To generate these regional lung structure-function measurements and enable broad clinical applications of quantitative pulmonary MRI and CT biomarkers, as a first step, accurate, reproducible and rapid lung segmentation and registration methods are required. In this regard, we first developed a 1H MRI lung segmentation algorithm that employs complementary hyperpolarized 3He MRI functional information for improved lung segmentation. The 1H-3He MRI joint segmentation algorithm was formulated as a coupled continuous min-cut model and solved through convex relaxation, for which a dual coupled continuous max-flow model was proposed and a max-flow-based efficient numerical solver was developed. Experimental results on a clinical dataset of 25 chronic obstructive pulmonary disease (COPD) patients ranging in disease severity demonstrated that the algorithm provided rapid lung segmentation with high accuracy, reproducibility and diminished user interaction. We then developed a general 1H MRI left-right lung segmentation approach by exploring the left-to-right lung volume proportion prior. The challenging volume proportion-constrained multi-region segmentation problem was approximated through convex relaxation and equivalently represented by a max-flow model with bounded flow conservation conditions. This gave rise to a multiplier-based high performance numerical implementation based on convex optimization theories. In 20 patients with mild- to-moderate and severe asthma, the approach demonstrated high agreement with manual segmentation, excellent reproducibility and computational efficiency. Finally, we developed a CT-3He MRI deformable registration approach that coupled the complementary CT-1H MRI registration. The joint registration problem was solved by exploring optical-flow techniques, primal-dual analyses and convex optimization theories. In a diverse group of patients with asthma and COPD, the registration approach demonstrated lower target registration error than single registration and provided fast regional lung structure-function measurements that were strongly correlated with a reference method. Collectively, these lung segmentation and registration algorithms demonstrated accuracy, reproducibility and workflow efficiency that all may be clinically-acceptable. All of this is consistent with the need for broad and large-scale clinical applications of pulmonary MRI and CT

    Pulmonary CT and MRI phenotypes that help explain chronic pulmonary obstruction disease pathophysiology and outcomes

    Get PDF
    Pulmonary x-ray computed tomographic (CT) and magnetic resonance imaging (MRI) research and development has been motivated, in part, by the quest to subphenotype common chronic lung diseases such as chronic obstructive pulmonary disease (COPD). For thoracic CT and MRI, the main COPD research tools, disease biomarkers are being validated that go beyond anatomy and structure to include pulmonary functional measurements such as regional ventilation, perfusion, and inflammation. In addition, there has also been a drive to improve spatial and contrast resolution while at the same time reducing or eliminating radiation exposure. Therefore, this review focuses on our evolving understanding of patient-relevant and clinically important COPD endpoints and how current and emerging MRI and CT tools and measurements may be exploited for their identification, quantification, and utilization. Since reviews of the imaging physics of pulmonary CT and MRI and reviews of other COPD imaging methods were previously published and well-summarized, we focus on the current clinical challenges in COPD and the potential of newly emerging MR and CT imaging measurements to address them. Here we summarize MRI and CT imaging methods and their clinical translation for generating reproducible and sensitive measurements of COPD related to pulmonary ventilation and perfusion as well as parenchyma morphology. The key clinical problems in COPD provide an important framework in which pulmonary imaging needs to rapidly move in order to address the staggering burden, costs, as well as the mortality and morbidity associated with COPD

    Quantitative lung CT analysis for the study and diagnosis of Chronic Obstructive Pulmonary Disease

    Get PDF
    The importance of medical imaging in the research of Chronic Obstructive Pulmonary Dis- ease (COPD) has risen over the last decades. COPD affects the pulmonary system through two competing mechanisms; emphysema and small airways disease. The relative contribu- tion of each component varies widely across patients whilst they can also evolve regionally in the lung. Patients can also be susceptible to exacerbations, which can dramatically ac- celerate lung function decline. Diagnosis of COPD is based on lung function tests, which measure airflow limitation. There is a growing consensus that this is inadequate in view of the complexities of COPD. Computed Tomography (CT) facilitates direct quantification of the pathological changes that lead to airflow limitation and can add to our understanding of the disease progression of COPD. There is a need to better capture lung pathophysiology whilst understanding regional aspects of disease progression. This has motivated the work presented in this thesis. Two novel methods are proposed to quantify the severity of COPD from CT by analysing the global distribution of features sampled locally in the lung. They can be exploited in the classification of lung CT images or to uncover potential trajectories of disease progression. A novel lobe segmentation algorithm is presented that is based on a probabilistic segmen- tation of the fissures whilst also constructing a groupwise fissure prior. In combination with the local sampling methods, a pipeline of analysis was developed that permits a re- gional analysis of lung disease. This was applied to study exacerbation susceptible COPD. Lastly, the applicability of performing disease progression modelling to study COPD has been shown. Two main subgroups of COPD were found, which are consistent with current clinical knowledge of COPD subtypes. This research may facilitate precise phenotypic characterisation of COPD from CT, which will increase our understanding of its natural history and associated heterogeneities. This will be instrumental in the precision medicine of COPD

    Texture Analysis and Machine Learning to Predict Pulmonary Ventilation from Thoracic Computed Tomography

    Get PDF
    Chronic obstructive pulmonary disease (COPD) leads to persistent airflow limitation, causing a large burden to patients and the health care system. Thoracic CT provides an opportunity to observe the structural pathophysiology of COPD, whereas hyperpolarized gas MRI provides images of the consequential ventilation heterogeneity. However, hyperpolarized gas MRI is currently limited to research centres, due to the high cost of gas and polarization equipment. Therefore, I developed a pipeline using texture analysis and machine learning methods to create predicted ventilation maps based on non-contrast enhanced, single-volume thoracic CT. In a COPD cohort, predicted ventilation maps were qualitatively and quantitatively related to ground-truth MRI ventilation, and both maps were related to important patient lung function and quality-of-life measures. This study is the first to demonstrate the feasibility of predicting hyperpolarized MRI-based ventilation from single-volume, breath-hold thoracic CT, which has potential to translate pulmonary ventilation information to widely available thoracic CT imaging

    Quantification of Pulmonary Ventilation using Hyperpolarized 3He Magnetic Resonance Imaging

    Get PDF
    Smoking-related lung diseases including chronic obstructive pulmonary disease (COPD) and lung cancer are projected to have claimed the lives of more than 30,000 Canadians in 2010. The poor prognosis and lack of new treatment options for lung diseases associated with smoking are largely due to the inadequacy of current techniques for evaluating lung function. Hyperpolarized 3He magnetic resonance imaging (MRI) is a relatively new technique, and quantitative measurements derived from these images, specifically the ventilation defect volume (VDV) and ventilation defect percent (VDP) have the potential to provide new sensitive measures of lung function. Here, we evaluate the reproducibility of VDV, and explore the sensitivity of these measurements in healthy young and elderly volunteers, and subjects with smoking-related lung disease (COPD and radiation-induced lung injury (RILI)). Our results show that 3He MRI measurements of ventilation have high short-term reproducibility in both healthy volunteers and subjects with COPD. Additionally, we report that these measurements are sensitive to age-related changes in lung function. Finally, in RILI we show that measurements of lung function derived from 3He MRI are sensitive to longitudinal changes in lung function following treatment, while in COPD we report that using VDP in conjunction with structural measurements of disease (using the apparent diffusion coefficient (ADC) derived from diffusion-weighted images) may provide a new method for phenotyping this smoking-related lung disease

    A Heterogeneous Patient-Specific Biomechanical Model of the Lung for Tumor Motion Compensation and Effective Lung Radiation Therapy Planning

    Get PDF
    Radiation therapy is a main component of treatment for many lung cancer patients. However, the respiratory motion can cause inaccuracies in radiation delivery that can lead to treatment complications. In addition, the radiation-induced damage to healthy tissue limits the effectiveness of radiation treatment. Motion management methods have been developed to increase the accuracy of radiation delivery, and functional avoidance treatment planning has emerged to help reduce the chances of radiation-induced toxicity. In this work, we have developed biomechanical model-based techniques for tumor motion estimation, as well as lung functional imaging. The proposed biomechanical model accurately estimates lung and tumor motion/deformation by mimicking the physiology of respiration, while accounting for heterogeneous changes in the lung mechanics caused by COPD, a common lung cancer comorbidity. A biomechanics-based image registration algorithm is developed and is combined with an air segmentation algorithm to develop a 4DCT-based ventilation imaging technique, with potential applications in functional avoidance therapies

    Imaging Biomarkers of Pulmonary Structure and Function

    Get PDF
    Asthma and chronic obstructive pulmonary disease (COPD) are characterized by airflow limitations resulting from airway obstruction and/or tissue destruction. The diagnosis and monitoring of these pulmonary diseases is primarily performed using spirometry, specifically the forced expiratory volume in one second (FEV1), which measures global airflow obstruction and provides no regional information of the different underlying disease pathologies. The limitations of spirometry and current therapies for lung disease patients have motivated the development of pulmonary imaging approaches, such as computed tomography (CT) and magnetic resonance imaging (MRI). Inhaled hyperpolarized noble gas MRI, specifically using helium-3 (3He) and xenon-129 (129Xe) gases, provides a way to quantify pulmonary ventilation by visualizing lung regions accessed by gas during a breath-hold, and alternatively, regions that are not accessed - coined “ventilation defects.” Despite the strong foundation and many advantages hyperpolarized 3He MRI has to offer research and patient care, clinical translation has been inhibited in part due to the cost and need for specialized equipment, including multinuclear-MR hardware and polarizers, and personnel. Accordingly, our objective was to develop and evaluate imaging biomarkers of pulmonary structure and function using MRI and CT without the use of exogenous contrast agents or specialized equipment. First, we developed and compared CT parametric response maps (PRM) with 3He MR ventilation images in measuring gas-trapping and emphysema in ex-smokers with and without COPD. We observed that in mild-moderate COPD, 3He MR ventilation abnormalities were related to PRM gas-trapping whereas in severe COPD, ventilation abnormalities correlated with both PRM gas-trapping and PRM emphysema. We then developed and compared pulmonary ventilation abnormalities derived from Fourier decomposition of free-breathing proton (1H) MRI (FDMRI) with 3He MRI in subjects with COPD and bronchiectasis. This work demonstrated that FDMRI and 3He MRI ventilation defects were strongly related in COPD, but not in bronchiectasis subjects. In COPD only, FDMRI ventilation defects were spatially related with 3He MRI ventilation defects and emphysema. Based on the FDMRI biomarkers developed in patients with COPD and bronchiectasis, we then evaluated ventilation heterogeneity in patients with severe asthma, both pre- and post-salbutamol as well as post-methacholine challenge, using FDMRI and 3He MRI. FDMRI free-breathing ventilation abnormalities were correlated with but under-estimated 3He MRI static ventilation defects. Finally, based on the previously developed free-breathing MRI approach, we developed a whole-lung free-breathing pulmonary 1H MRI technique to measure regional specific-ventilation and evaluated both asthmatics and healthy volunteers. These measurements not only provided similar information as specific-ventilation measured using plethysmography, but also information about regional ventilation defects that were correlated with 3He MRI ventilation abnormalities. These results demonstrated that whole-lung free-breathing 1H MRI biomarker of specific-ventilation may reflect ventilation heterogeneity and/or gas-trapping in asthma. These important findings indicate that imaging biomarkers of pulmonary structure and function using MRI and CT have the potential to regionally reveal the different pathologies in COPD and asthma without the use of exogenous contrast agents. The development and validation of these clinically meaningful imaging biomarkers are critically required to accelerate pulmonary imaging translation from the research workbench to being a part of the clinical workflow, with the overall goal to improve patient outcomes

    Pulmonary Lobe Segmentation with Probabilistic Segmentation of the Fissures and a Groupwise Fissure Prior

    Get PDF
    A fully automated, unsupervised lobe segmentation algorithm is presented based on a probabilistic segmentation of the fissures and the simultaneous construction of a population model of the fissures. A two-class probabilistic segmentation segments the lung into candidate fissure voxels and the surrounding parenchyma. This was combined with anatomical information and a groupwise fissure prior to drive non-parametric surface fitting to obtain the final segmentation. The performance of our fissure segmentation was validated on 30 patients from the COPDGene cohort, achieving a high median F1-score of 0:90 and showed general insensitivity to filter parameters. We evaluated our lobe segmentation algorithm on the LOLA11 dataset, which contains 55 cases at varying levels of pathology. We achieved the highest score of 0:884 of the automated algorithms. Our method was further tested quantitatively and qualitatively on 80 patients from the COPDGene study at varying levels of functional impairment. Accurate segmentation of the lobes is shown at various degrees of fissure incompleteness for 96% of all cases. We also show the utility of including a groupwise prior in segmenting the lobes in regions of grossly incomplete fissures
    corecore