527 research outputs found

    Honeybee-based biohybrid system for landmine detection

    Get PDF
    This research was funded in part by NATO Science for Peace and Security (SPS) Programme, project number SPS 985355, “Biological Method (Bees) for Explosive Detection”.Legacy landmines in post-conflict areas are a non-discriminatory lethal hazard and can still be triggered decades after the conflict has ended. Efforts to detect these explosive devices are expensive, time-consuming, and dangerous to humans and animals involved. While methods such as metal detectors and sniffer dogs have successfully been used in humanitarian demining, more tools are required for both site surveying and accurate mine detection. Honeybees have emerged in recent years as efficient bioaccumulation and biomonitoring animals. The system reported here uses two complementary landmine detection methods: passive sampling and active search. Passive sampling aims to confirm the presence of explosive materials in a mine-suspected area by the analysis of explosive material brought back to the colony on honeybee bodies returning from foraging trips. Analysis is performed by light-emitting chemical sensors detecting explosives thermally desorbed from a preconcentrator strip. The active search is intended to be able to pinpoint the place where individual landmines are most likely to be present. Used together, both methods are anticipated to be useful in an end-to-end process for area surveying, suspected hazardous area reduction, and post-clearing internal and external quality control in humanitarian demining.Publisher PDFPeer reviewe

    Earthmoving construction automation with military applications: Past, present and future

    Full text link
    © ISARC 2018 - 35th International Symposium on Automation and Robotics in Construction and International AEC/FM Hackathon: The Future of Building Things. All rights reserved. Amongst increasing innovations in frontier engineering sciences, the advancements in Robotic and Autonomous Systems (RAS) has brought about a new horizon in construction applications. There is evidence of the increasing interest in RAS technologies in the civil construction sector being reflected in construction efforts of many military forces. In particular, Army or ground-based forces are frequently called upon to conduct construction tasks as part of military operations, tasks which could be partially or fully aided by the employment of RAS technologies. Along with recent advances in the Internet of Things (IoT) and cyber-physical system infrastructure, it is essential to examine the current maturity, technical feasibility, and affordability, as well as the challenges and future directions of the adoption and application of RAS to military construction. This paper presents a comprehensive survey and provides a contemporary and industry-independent overview on the state-of-the-art of earthmoving construction automation used in defence, spanning current world’s best practice through to that which is predicted over the coming years

    Hyperspectral Imaging for Landmine Detection

    Get PDF
    This PhD thesis aims at investigating the possibility to detect landmines using hyperspectral imaging. Using this technology, we are able to acquire at each pixel of the image spectral data in hundreds of wavelengths. So, at each pixel we obtain a reflectance spectrum that is used as fingerprint to identify the materials in each pixel, and mainly in our project help us to detect the presence of landmines. The proposed process works as follows: a preconfigured drone (hexarotor or octorotor) will carry the hyperspectral camera. This programmed drone is responsible of flying over the contaminated area in order to take images from a safe distance. Various image processing techniques will be used to treat the image in order to isolate the landmine from the surrounding. Once the presence of a mine or explosives is suspected, an alarm signal is sent to the base station giving information about the type of the mine, its location and the clear path that could be taken by the mine removal team in order to disarm the mine. This technology has advantages over the actually used techniques: • It is safer because it limits the need of humans in the searching process and gives the opportunity to the demining team to detect the mines while they are in a safe region. • It is faster. A larger area could be cleared in a single day by comparison with demining techniques • This technique can be used to detect at the same time objects other than mines such oil or minerals. First, a presentation of the problem of landmines that is expanding worldwide referring to some statistics from the UN organizations is provided. In addition, a brief presentation of different types of landmines is shown. Unfortunately, new landmines are well camouflaged and are mainly made of plastic in order to make their detection using metal detectors harder. A summary of all landmine detection techniques is shown to give an idea about the advantages and disadvantages of each technique. In this work, we give an overview of different projects that worked on the detection of landmines using hyperspectral imaging. We will show the main results achieved in this field and future work to be done in order to make this technology effective. Moreover, we worked on different target detection algorithms in order to achieve high probability of detection with low false alarm rate. We tested different statistical and linear unmixing based methods. In addition, we introduced the use of radial basis function neural networks in order to detect landmines at subpixel level. A comparative study between different detection methods will be shown in the thesis. A study of the effect of dimensionality reduction using principal component analysis prior to classification is also provided. The study shows the dependency between the two steps (feature extraction and target detection). The selection of target detection algorithm will define if feature extraction in previous phase is necessary. A field experiment has been done in order to study how the spectral signature of landmine will change depending on the environment in which the mine is planted. For this, we acquired the spectral signature of 6 types of landmines in different conditions: in Lab where specific source of light is used; in field where mines are covered by grass; and when mines are buried in soil. The results of this experiment are very interesting. The signature of two types of landmines are used in the simulations. They are a database necessary for supervised detection of landmines. Also we extracted some spectral characteristics of landmines that would help us to distinguish mines from background

    No Grice: Computers that Lie, Deceive and Conceal

    Get PDF
    In the future our daily life interactions with other people, with computers, robots and smart environments will be recorded and interpreted by computers or embedded intelligence in environments, furniture, robots, displays, and wearables. These sensors record our activities, our behavior, and our interactions. Fusion of such information and reasoning about such information makes it possible, using computational models of human behavior and activities, to provide context- and person-aware interpretations of human behavior and activities, including determination of attitudes, moods, and emotions. Sensors include cameras, microphones, eye trackers, position and proximity sensors, tactile or smell sensors, et cetera. Sensors can be embedded in an environment, but they can also move around, for example, if they are part of a mobile social robot or if they are part of devices we carry around or are embedded in our clothes or body. \ud \ud Our daily life behavior and daily life interactions are recorded and interpreted. How can we use such environments and how can such environments use us? Do we always want to cooperate with these environments; do these environments always want to cooperate with us? In this paper we argue that there are many reasons that users or rather human partners of these environments do want to keep information about their intentions and their emotions hidden from these smart environments. On the other hand, their artificial interaction partner may have similar reasons to not give away all information they have or to treat their human partner as an opponent rather than someone that has to be supported by smart technology.\ud \ud This will be elaborated in this paper. We will survey examples of human-computer interactions where there is not necessarily a goal to be explicit about intentions and feelings. In subsequent sections we will look at (1) the computer as a conversational partner, (2) the computer as a butler or diary companion, (3) the computer as a teacher or a trainer, acting in a virtual training environment (a serious game), (4) sports applications (that are not necessarily different from serious game or education environments), and games and entertainment applications

    Modern GPR Target Recognition Methods

    Full text link
    Traditional GPR target recognition methods include pre-processing the data by removal of noisy signatures, dewowing (high-pass filtering to remove low-frequency noise), filtering, deconvolution, migration (correction of the effect of survey geometry), and can rely on the simulation of GPR responses. The techniques usually suffer from the loss of information, inability to adapt from prior results, and inefficient performance in the presence of strong clutter and noise. To address these challenges, several advanced processing methods have been developed over the past decade to enhance GPR target recognition. In this chapter, we provide an overview of these modern GPR processing techniques. In particular, we focus on the following methods: adaptive receive processing of range profiles depending on the target environment; adoption of learning-based methods so that the radar utilizes the results from prior measurements; application of methods that exploit the fact that the target scene is sparse in some domain or dictionary; application of advanced classification techniques; and convolutional coding which provides succinct and representatives features of the targets. We describe each of these techniques or their combinations through a representative application of landmine detection.Comment: Book chapter, 56 pages, 17 figures, 12 tables. arXiv admin note: substantial text overlap with arXiv:1806.0459
    corecore