10,261 research outputs found

    Generating Tailored, Comparative Descriptions with Contextually Appropriate Intonation

    Get PDF
    Generating responses that take user preferences into account requires adaptation at all levels of the generation process. This article describes a multi-level approach to presenting user-tailored information in spoken dialogues which brings together for the first time multi-attribute decision models, strategic content planning, surface realization that incorporates prosody prediction, and unit selection synthesis that takes the resulting prosodic structure into account. The system selects the most important options to mention and the attributes that are most relevant to choosing between them, based on the user model. Multiple options are selected when each offers a compelling trade-off. To convey these trade-offs, the system employs a novel presentation strategy which straightforwardly lends itself to the determination of information structure, as well as the contents of referring expressions. During surface realization, the prosodic structure is derived from the information structure using Combinatory Categorial Grammar in a way that allows phrase boundaries to be determined in a flexible, data-driven fashion. This approach to choosing pitch accents and edge tones is shown to yield prosodic structures with significantly higher acceptability than baseline prosody prediction models in an expert evaluation. These prosodic structures are then shown to enable perceptibly more natural synthesis using a unit selection voice that aims to produce the target tunes, in comparison to two baseline synthetic voices. An expert evaluation and f0 analysis confirm the superiority of the generator-driven intonation and its contribution to listeners' ratings

    Building and Designing Expressive Speech Synthesis

    Get PDF
    We know there is something special about speech. Our voices are not just a means of communicating. They also give a deep impression of who we are and what we might know. They can betray our upbringing, our emotional state, our state of health. They can be used to persuade and convince, to calm and to excite. As speech systems enter the social domain they are required to interact, support and mediate our social relationships with 1) each other, 2) with digital information, and, increasingly, 3) with AI-based algorithms and processes. Socially Interactive Agents (SIAs) are at the fore- front of research and innovation in this area. There is an assumption that in the future “spoken language will provide a natural conversational interface between human beings and so-called intelligent systems.” [Moore 2017, p. 283]. A considerable amount of previous research work has tested this assumption with mixed results. However, as pointed out “voice interfaces have become notorious for fostering frustration and failure” [Nass and Brave 2005, p.6]. It is within this context, between our exceptional and intelligent human use of speech to communicate and interact with other humans, and our desire to leverage this means of communication for artificial systems, that the technology, often termed expressive speech synthesis uncomfortably falls. Uncomfortably, because it is often overshadowed by issues in interactivity and the underlying intelligence of the system which is something that emerges from the interaction of many of the components in a SIA. This is especially true of what we might term conversational speech, where decoupling how things are spoken, from when and to whom they are spoken, can seem an impossible task. This is an even greater challenge in evaluation and in characterising full systems which have made use of expressive speech. Furthermore when designing an interaction with a SIA, we must not only consider how SIAs should speak but how much, and whether they should even speak at all. These considerations cannot be ignored. Any speech synthesis that is used in the context of an artificial agent will have a perceived accent, a vocal style, an underlying emotion and an intonational model. Dimensions like accent and personality (cross speaker parameters) as well as vocal style, emotion and intonation during an interaction (within-speaker parameters) need to be built in the design of a synthetic voice. Even a default or neutral voice has to consider these same expressive speech synthesis components. Such design parameters have a strong influence on how effectively a system will interact, how it is perceived and its assumed ability to perform a task or function. To ignore these is to blindly accept a set of design decisions that ignores the complex effect speech has on the user’s successful interaction with a system. Thus expressive speech synthesis is a key design component in SIAs. This chapter explores the world of expressive speech synthesis, aiming to act as a starting point for those interested in the design, building and evaluation of such artificial speech. The debates and literature within this topic are vast and are fundamentally multidisciplinary in focus, covering a wide range of disciplines such as linguistics, pragmatics, psychology, speech and language technology, robotics and human-computer interaction (HCI), to name a few. It is not our aim to synthesise these areas but to give a scaffold and a starting point for the reader by exploring the critical dimensions and decisions they may need to consider when choosing to use expressive speech. To do this, the chapter explores the building of expressive synthesis, highlighting key decisions and parameters as well as emphasising future challenges in expressive speech research and development. Yet, before these are expanded upon we must first try and define what we actually mean by expressive speech

    Study on phonetic context of Malay syllables towards the development of Malay speech synthesizer [TK7882.S65 H233 2007 f rb].

    Get PDF
    Pensintesis sebutan Bahasa Melayu telah berkembang daripada teknik pensintesis berparameter (pemodelan penyebutan manusia dan pensintesis berdasarkan formant) kepada teknik pensintesis tidak berparameter (pensintesis sebutan berdasarkan pencantuman). Speech synthesizer has evolved from parametric speech synthesizer (articulatory and formant synthesizer) to non-parametric synthesizer (concatenative synthesizer). Recently, the concatenative speech synthesizer approach is moving towards corpusbased or unit selection technique

    Control concepts for articulatory speech synthesis

    Get PDF
    We present two concepts for the generation of gestural scores to control an articulatory speech synthesizer. Gestural scores are the common input to the synthesizer and constitute an or- ganized pattern of articulatory gestures. The first concept gen- erates the gestures for an utterance using the phonetic transcrip- tions, phone durations, and intonation commands predicted by the Bonn Open Synthesis System (BOSS) from an arbitrary in- put text. This concept extends the synthesizerto a text-to-speech synthesis system. The idea of the second concept is to use tim- ing informationextracted from ElectromagneticArticulography signals to generate the articulatory gestures. Therefore, it is a concept for the re-synthesis of natural utterances. Finally, ap- plication prospects for the presented synthesizer are discussed
    corecore