3,288 research outputs found

    Open source health systems

    Get PDF

    A service oriented architecture to implement clinical guidelines for evidence-based medical practice

    Get PDF
    Health information technology (HIT) has been identified as the fundamental driver to streamline the healthcare delivery processes to improve care quality and reduce operational costs. Of the many facets of HIT is Clinical Decision Support (CDS) which provides the physician with patient-specific inferences, intelligently filtered and organized, at appropriate times. This research has been conducted to develop an agile solution to Clinical Decision Support at the point of care in a healthcare setting as a potential solution to the challenges of interoperability and the complexity of possible solutions. The capabilities of Business Process Management (BPM) and Workflow Management systems are leveraged to support a Service Oriented Architecture development approach for ensuring evidence based medical practice. The aim of this study is to present an architecture solution that is based on SOA principles and embeds clinical guidelines within a healthcare setting. Since the solution is designed to implement real life healthcare scenarios, it essentially supports evidence-based clinical guidelines that are liable to change over a period of time. The thesis is divided into four parts. The first part consists of an Introduction to the study and a background to existing approaches for development and integration of Clinical Decision Support Systems. The second part focuses on the development of a Clinical Decision Support Framework based on Service Oriented Architecture. The CDS Framework is composed of standards based open source technologies including JBoss SwitchYard (enterprise service bus), rule-based CDS enabled by JBoss Drools, process modelling using Business Process Modelling and Notation. To ensure interoperability among various components, healthcare standards by HL7 and OMG are implemented. The third part provides implementation of this CDS Framework in healthcare scenarios. Two scenarios are concerned with the medical practice for diagnosis and early intervention (Chronic Obstructive Pulmonary Disease and Lung Cancer), one case study for Genetic data enablement of CDS systems (New born screening for Cystic Fibrosis) and the last case study is about using BPM techniques for managing healthcare organizational perspectives including human interaction with automated clinical workflows. The last part concludes the research with contributions in design and architecture of CDS systems. This thesis has primarily adopted the Design Science Research Methodology for Information Systems. Additionally, Business Process Management Life Cycle, Agile Business Rules Development methodology and Pattern-Based Cycle for E-Workflow Design for individual case studies are used. Using evidence-based clinical guidelines published by UK’s National Institute of Health and Care Excellence, the integration of latest research in clinical practice has been employed in the automated workflows. The case studies implemented using the CDS Framework are evaluated against implementation requirements, conformance to SOA principles and response time using load testing strategy. For a healthcare organization to achieve its strategic goals in administrative and clinical practice, this research has provided a standards based integration solution in the field of clinical decision support. A SOA based CDS can serve as a potential solution to complexities in IT interventions as the core data and business logic functions are loosely coupled from the presentation. Additionally, the results of this this research can serve as an exemplar for other industrial domains requiring rapid response to evolving business processes

    Virtual Research Integration Collaboration: Procedural report

    No full text
    The aim of the project is to build a framework for the integration of basic science and clinical research to manage research lifecycles and allow for integration of scientific approaches throughout these lifecycles into the everyday work practice of the consortia that manage translational clinical research. The project will take the CORE VRE and embed it into a National centre for surgical excellence, the Royal National Orthopaedic Hospital (RNOH). The VRE will integrate both with the institutional systems and research life cycle, and with the national systems such as the National Health Service (NHS). It is our aim to integrate the CORE VRE with myExperiment to provide a set of services at RNOH to cover the four main areas of the research cycle, namely: the monitoring and governance of trials (experiment research administration); the trial protocols (experiment workflows); the publishing, dissemination and discussion on the results of trials in a repository; and the discovery of information from the repository and other resources. For this community, there are three tightly coupled areas of focus: research, clinical practice, and education (in the form of continuing professional development and training of the next generation of surgeons). In this project, our user community will be heavily involved in co-designing and codeployment of the tool set, and in particular the front end of the workbench will be user focused. The tools will need to be available to staff anywhere with the organisation, as clinicians need to be able to enter the data during clinics and directors of research need to be able to monitor the trials. This will bring with it a number of inter-operability issues, as we move data between the VRE, the hospital systems (NHS) and the institutional systems. To aid the understanding of the how the system will be used, we outline a typical ‘research cycle’ that includes the practice of a clinical specialist in orthopaedics (who may also be a Higher surgical trainee) and a basic scientist. The purpose of this is to identify time essential information provision and interaction with pervasive technologies. For new researchers one of the most difficult tasks is to learn good practice or find related experiments to learn how to instantiate the protocols; in many organisations it is often easier to repeat an experiment than to find the results of a similar previous experiment. In this abstracted model of the research lifecycle, we have split up the cycle into four main research activities. In each of these activities the different issues and stakeholders are addressed. The wider community nationally is represented by the Musculoskeletal network of Greater London, NHS, e-science, Surgical and VRE communities. It is through the Musculoskeletal network of Greater London that we will be able to co-ordinate knowledge and demonstrations to advise the community and for continuity. This project will impact on the wider academic community in the UK, initially through dissemination via organisations such as BriteNet (Tissue Engineering), The British Orthopaedic Association, British Orthopaedic Research Society, and the British Elbow and Shoulder Society as the groups tied into the consortia development

    PRODUCT LINE ARCHITECTURE FOR HADRONTHERAPY CONTROL SYSTEM: APPLICATIONS DEVELOPMENT AND CERTIFICATION

    Get PDF
    Hadrontherapy is the treatment of cancer with charged ion beams. As the charged ion beams used in hadrontherapy are required to be accelerated to very large energies, the particle accelerators used in this treatment are complex and composed of several sub-systems. As a result, control systems are employed for the supervision and control of these accelerators. Currently, The Italian National Hadrontherapy Facility (CNAO) has the objective of modernizing one of the software environments of its control system. Such a project would allow for the integration of new types of devices into the control system, such as mobile devices, as well as introducing newer technologies into the environment. In order to achieve this, this work began with the requirement analysis and definition of a product line architecture for applications of the upgraded control system environment. The product line architecture focuses on reliability, maintainability, and ease of compliance with medical software certification directives. This was followed by the design and development of several software services aimed at allowing the communication of the environments applications and other components of the control system, such as remote file access, relational data access, and OPC-UA. In addition, several libraries and tools have been developed to support the development of future control system applications, following the defined product line architecture. Lastly, a pilot application was created using the tools developed during this work, as well as the preliminary results of a cross-environment integration project. The approach followed in this work is later evaluated by comparing the developed tools to their legacy counterparts, as well as estimating the impact of future applications following the defined product line architecture.Hadrontherapy is the treatment of cancer with charged ion beams. As the charged ion beams used in hadrontherapy are required to be accelerated to very large energies, the particle accelerators used in this treatment are complex and composed of several sub-systems. As a result, control systems are employed for the supervision and control of these accelerators. Currently, The Italian National Hadrontherapy Facility (CNAO) has the objective of modernizing one of the software environments of its control system. Such a project would allow for the integration of new types of devices into the control system, such as mobile devices, as well as introducing newer technologies into the environment. In order to achieve this, this work began with the requirement analysis and definition of a product line architecture for applications of the upgraded control system environment. The product line architecture focuses on reliability, maintainability, and ease of compliance with medical software certification directives. This was followed by the design and development of several software services aimed at allowing the communication of the environments applications and other components of the control system, such as remote file access, relational data access, and OPC-UA. In addition, several libraries and tools have been developed to support the development of future control system applications, following the defined product line architecture. Lastly, a pilot application was created using the tools developed during this work, as well as the preliminary results of a cross-environment integration project. The approach followed in this work is later evaluated by comparing the developed tools to their legacy counterparts, as well as estimating the impact of future applications following the defined product line architecture

    Medical Informatics

    Get PDF
    Information technology has been revolutionizing the everyday life of the common man, while medical science has been making rapid strides in understanding disease mechanisms, developing diagnostic techniques and effecting successful treatment regimen, even for those cases which would have been classified as a poor prognosis a decade earlier. The confluence of information technology and biomedicine has brought into its ambit additional dimensions of computerized databases for patient conditions, revolutionizing the way health care and patient information is recorded, processed, interpreted and utilized for improving the quality of life. This book consists of seven chapters dealing with the three primary issues of medical information acquisition from a patient's and health care professional's perspective, translational approaches from a researcher's point of view, and finally the application potential as required by the clinicians/physician. The book covers modern issues in Information Technology, Bioinformatics Methods and Clinical Applications. The chapters describe the basic process of acquisition of information in a health system, recent technological developments in biomedicine and the realistic evaluation of medical informatics

    Interoperability and FAIRness through a novel combination of Web technologies

    Get PDF
    Data in the life sciences are extremely diverse and are stored in a broad spectrum of repositories ranging from those designed for particular data types (such as KEGG for pathway data or UniProt for protein data) to those that are general-purpose (such as FigShare, Zenodo, Dataverse or EUDAT). These data have widely different levels of sensitivity and security considerations. For example, clinical observations about genetic mutations in patients are highly sensitive, while observations of species diversity are generally not. The lack of uniformity in data models from one repository to another, and in the richness and availability of metadata descriptions, makes integration and analysis of these data a manual, time-consuming task with no scalability. Here we explore a set of resource-oriented Web design patterns for data discovery, accessibility, transformation, and integration that can be implemented by any general- or special-purpose repository as a means to assist users in finding and reusing their data holdings. We show that by using off-the-shelf technologies, interoperability can be achieved atthe level of an individual spreadsheet cell. We note that the behaviours of this architecture compare favourably to the desiderata defined by the FAIR Data Principles, and can therefore represent an exemplar implementation of those principles. The proposed interoperability design patterns may be used to improve discovery and integration of both new and legacy data, maximizing the utility of all scholarly outputs
    • 

    corecore