22 research outputs found

    Towards inline spatially resolved temperature sensing in thermal ablation with chirped fiber Bragg grating

    Get PDF
    We investigate the theory and feasibility of an in-line spatially resolved temperature sensor, suitable for thermal ablation monitoring. The sensor is based o a chirped fiber Bragg grating (CFBG). The CFBG is modelled as a chain of Bragg gratings, each sensitive to local temperature variations. By using a combination of iterative and statistical optimization techniques, it is possible to use demodulate the CFBG, in case of a Gaussian-like spatial temperature profile. A feasibility test based on CFBG simulation shows that the CFBG returns error <1 mm on cells damage threshold spatial estimation and good noise resilience

    Characterization of fiber optic distributed temperature sensors for tissue laser ablation

    Get PDF
    Fiber optics is the most promising technology for distributed temperature sensing. The paper investigates the characterization of probes based on single or multiplexed fiber Bragg gratings, specifically conceived to evaluate the temperature distribution in applications that imply large temperature gradients, such as in laser induced thermal treatments of solid tumors. A setup for the characterization of fiber Bragg grating sensors in non uniform temperature conditions is described and examples of applications in case that mimic actual working conditions are reported

    Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue

    Get PDF
    The response of a fiber optic sensor [linearly chirped fiber Bragg grating (LCFBG)] to a linear thermal gradient applied on its sensing length (i.e., 1.5 cm) has been investigated. After these bench tests, we assessed their feasibility for temperature monitoring during thermal tumor treatment. In particular, we performed experi- ments during ex vivo laser ablation (LA) in pig liver and in vivo thermal ablation in animal models (pigs). We investigated the following: (i) the relationship between the full width at half maximum of the LCFBG spectrum and the temperature difference among the extremities of the LCFBG and (ii) the relationship between the mean spectrum wavelength and the mean temperature acting on the LCFBG sensing area. These relationships showed a linear trend during both bench tests and LA in animal models. Thermal sensitivity was significant although different values were found with regards to bench tests and animal experiments. The linear trend and significant sensitivity allow hypothesizing a future use of this kind of sensor to monitor both temperature gradient and mean temperature within a tissue undergoing thermal treatment

    Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers

    Get PDF
    [EN] We propose a setup for multiplexed distributed optical fiber sensors capable of resolving temperature distribution in thermo-therapies, with a spatial resolution of 2.5 mm over multiple fibers interrogated simultaneously. The setup is based on optical backscatter reflectometry (OBR) applied to optical fibers having backscattered power significantly larger than standard fibers (36.5 dB), obtained through MgO doping. The setup is based on a scattering-level multiplexing, which allows interrogating all the sensing fibers simultaneously, thanks to the fact that the backscattered power can be unambiguously associated to each fiber. The setup has been validated for the planar measurement of temperature profiles in ex vivo radiofrequency ablation, obtaining the measurement of temperature over a surface of 96 total points (4 fibers, 8 sensing points per cu). The spatial resolution obtained for the planar measurement allows extending distributed sensing to surface, or even three-dimensional, geometries performing temperature sensing in the tissue with millimeter resolution in multiple dimensions.The research has been supported by ORAU program at Nazarbayev University (grants LIFESTART 2017-2019 and FOSTHER2018-2020), by ANR project Nice-DREAM (grant ANR-14-CE07-0016-03), and by project DIMENSION TEC2017 88029-R funded by the Spanish Ministry of Economy and Competitiveness. This work was partly supported by the SIRASI project - Sistema Robotico a supporto della Riabilitazione di Arto Superiore e Inferiore (Bando INTESE - CUP: F86D15000050002).Beisenova, A.; Issatayeva, A.; Sovetov, S.; Korganbayev, S.; Jelbuldina, M.; Ashikbayeva, Z.; Blanc, W.... (2019). Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers. Biomedical Optics Express. 10(3):1282-1296. https://doi.org/10.1364/BOE.10.001282S12821296103Goldberg, S. N., Gazelle, G. S., Compton, C. C., Mueller, P. R., & Tanabe, K. K. (2000). Treatment of intrahepatic malignancy with radiofrequency ablation. Cancer, 88(11), 2452-2463. doi:10.1002/1097-0142(20000601)88:113.0.co;2-3Padma, S., Martinie, J. B., & Iannitti, D. A. (2009). Liver tumor ablation: Percutaneous and open approaches. Journal of Surgical Oncology, 100(8), 619-634. doi:10.1002/jso.21364Sapareto, S. A., & Dewey, W. C. (1984). Thermal dose determination in cancer therapy. International Journal of Radiation Oncology*Biology*Physics, 10(6), 787-800. doi:10.1016/0360-3016(84)90379-1Shaw, A., ter Haar, G., Haller, J., & Wilkens, V. (2015). Towards a dosimetric framework for therapeutic ultrasound. International Journal of Hyperthermia, 31(2), 182-192. doi:10.3109/02656736.2014.997311Lubner, M. G., Brace, C. L., Hinshaw, J. L., & Lee, F. T. (2010). Microwave Tumor Ablation: Mechanism of Action, Clinical Results, and Devices. Journal of Vascular and Interventional Radiology, 21(8), S192-S203. doi:10.1016/j.jvir.2010.04.007Kennedy, J. E. (2005). High-intensity focused ultrasound in the treatment of solid tumours. Nature Reviews Cancer, 5(4), 321-327. doi:10.1038/nrc1591Yang, X. (2017). Science to Practice: Enhancing Photothermal Ablation of Colorectal Liver Metastases with Targeted Hybrid Nanoparticles. Radiology, 285(3), 699-701. doi:10.1148/radiol.2017170993Tosi, D., Schena, E., Molardi, C., & Korganbayev, S. (2018). Fiber optic sensors for sub-centimeter spatially resolved measurements: Review and biomedical applications. Optical Fiber Technology, 43, 6-19. doi:10.1016/j.yofte.2018.03.007Manns, F., Milne, P. J., Gonzalez-Cirre, X., Denham, D. B., Parel, J.-M., & Robinson, D. S. (1998). In Situ temperature measurements with thermocouple probes during laser interstitial thermotherapy (LITT): Quantification and correction of a measurement artifact. Lasers in Surgery and Medicine, 23(2), 94-103. doi:10.1002/(sici)1096-9101(1998)23:23.0.co;2-qSaccomandi, P., Schena, E., & Silvestri, S. (2013). Techniques for temperature monitoring during laser-induced thermotherapy: An overview. International Journal of Hyperthermia, 29(7), 609-619. doi:10.3109/02656736.2013.832411Froggatt, M. (1996). Distributed measurement of the complex modulation of a photoinduced Bragg grating in an optical fiber. Applied Optics, 35(25), 5162. doi:10.1364/ao.35.005162Macchi, E. G., Tosi, D., Braschi, G., Gallati, M., Cigada, A., Busca, G., & Lewis, E. (2014). Optical fiber sensors-based temperature distribution measurement inex vivoradiofrequency ablation with submillimeter resolution. Journal of Biomedical Optics, 19(11), 117004. doi:10.1117/1.jbo.19.11.117004Palumbo, G., Iadicicco, A., Tosi, D., Verze, P., Carlomagno, N., Tammaro, V., … Campopiano, S. (2016). Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber Bragg gratings. Journal of Biomedical Optics, 21(11), 117003. doi:10.1117/1.jbo.21.11.117003Parent, F., Loranger, S., Mandal, K. K., Iezzi, V. L., Lapointe, J., Boisvert, J.-S., … Kashyap, R. (2017). Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers. Biomedical Optics Express, 8(4), 2210. doi:10.1364/boe.8.002210MacChesney, J. B., O’Connor, P. B., & Presby, H. M. (1974). A new technique for the preparation of low-loss and graded-index optical fibers. Proceedings of the IEEE, 62(9), 1280-1281. doi:10.1109/proc.1974.9608Blanc, W., Mauroy, V., Nguyen, L., Shivakiran Bhaktha, B. N., Sebbah, P., Pal, B. P., & Dussardier, B. (2011). Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition. Journal of the American Ceramic Society, 94(8), 2315-2318. doi:10.1111/j.1551-2916.2011.04672.xBlanc, W., Guillermier, C., & Dussardier, B. (2012). Composition of nanoparticles in optical fibers by Secondary Ion Mass Spectrometry. Optical Materials Express, 2(11), 1504. doi:10.1364/ome.2.001504Todd, N., Diakite, M., Payne, A., & Parker, D. L. (2013). In vivo evaluation of multi-echo hybrid PRF/T1 approach for temperature monitoring during breast MR-guided focused ultrasound surgery treatments. Magnetic Resonance in Medicine, 72(3), 793-799. doi:10.1002/mrm.2497

    Fiber-Optic Temperature and Pressure Sensors Applied to Radiofrequency Thermal Ablation in Liver Phantom: Methodology and Experimental Measurements

    Get PDF
    Radiofrequency thermal ablation (RFA) is a procedure aimed at interventional cancer care and is applied to the treatment of small- and midsize tumors in lung, kidney, liver, and other tissues. RFA generates a selective high-temperature field in the tissue; temperature values and their persistency are directly related to the mortality rate of tumor cells. Temperature measurement in up to 3–5 points, using electrical thermocouples, belongs to the present clinical practice of RFA and is the foundation of a physical model of the ablation process. Fiber-optic sensors allow extending the detection of biophysical parameters to a vast plurality of sensing points, using miniature and noninvasive technologies that do not alter the RFA pattern. This work addresses the methodology for optical measurement of temperature distribution and pressure using four different fiber-optic technologies: fiber Bragg gratings (FBGs), linearly chirped FBGs (LCFBGs), Rayleigh scattering-based distributed temperature system (DTS), and extrinsic Fabry-Perot interferometry (EFPI). For each instrument, methodology for ex vivo sensing, as well as experimental results, is reported, leading to the application of fiber-optic technologies in vivo. The possibility of using a fiber-optic sensor network, in conjunction with a suitable ablation device, can enable smart ablation procedure whereas ablation parameters are dynamically changed

    A Fiber Optic Probe for Tumor Laser Ablation with Integrated Temperature Measurement Capability

    Get PDF
    The paper presents the characterization results of a new all-optical applicator for improved tumor laser ablation treatments that features customized irradiation pattern and builtin temperature sensors. The probe exploits a double cladding optical fiber to integrate some Bragg gratings acting as temperature sensing elements in the core, while guiding the high power beam used for the ablation in the inner cladding. The assessment of the probe behavior has been conducted in two steps: first, with an agar gel phantom to characterize the irradiation pattern and to validate the Bragg grating based measurement setup in comparison with a thermographic camera; then, simulating actual treatments using an ex-vivo animal liver

    Femtosecond Laser Micromachining of Advanced Fiber Optic Sensors and Devices

    Get PDF
    Research and development in photonic micro/nano structures functioned as sensors and devices have experienced significant growth in recent years, fueled by their broad applications in the fields of physical, chemical and biological quantities. Compared with conventional sensors with bulky assemblies, recent process in femtosecond (fs) laser three-dimensional (3D) micro- and even nano-scale micromachining technique has been proven an effective and flexible way for one-step fabrication of assembly-free micro devices and structures in various transparent materials, such as fused silica and single crystal sapphire materials. When used for fabrication, fs laser has many unique characteristics, such as negligible cracks, minimal heat-affected-zone, low recast, high precision, and the capability of embedded 3D fabrication, compared with conventional long pulse lasers. The merits of this advanced manufacturing technique enable the unique opportunity to fabricate integrated sensors with improved robustness, enriched functionality, enhanced intelligence, and unprecedented performance. Recently, fiber optic sensors have been widely used for energy, defense, environmental, biomedical and industry sensing applications. In addition to the well-known advantages of miniaturized in size, high sensitivity, simple to fabricate, immunity to electromagnetic interference (EMI) and resistance to corrosion, all-optical fiber sensors are becoming more and more desirable when designed with characteristics of assembly free and operation in the reflection configuration. In particular, all-optical fiber sensor is a good candidate to address the monitoring needs within extreme environment conditions, such as high temperature, high pressure, toxic/corrosive/erosive atmosphere, and large strain/stress. In addition, assembly-free, advanced fiber optic sensors and devices are also needed in optofluidic systems for chemical/biomedical sensing applications and polarization manipulation in optical systems. Different fs laser micromachining techniques were investigated for different purposes, such as fs laser direct ablating, fs laser irradiation with chemical etching (FLICE) and laser induced stresses. A series of high performance assembly-free, all-optical fiber sensor probes operated in a reflection configuration were proposed and fabricated. Meanwhile, several significant sensing measurements (e.g., high temperature, high pressure, refractive index variation, and molecule identification) of the proposed sensors were demonstrated in this dissertation as well. In addition to the probe based fiber optic sensors, stress induced birefringence was also created in the commercial optical fibers using fs laser induced stresses technique, resulting in several advanced polarization dependent devices, including a fiber inline quarter waveplate and a fiber inline polarizer based on the long period fiber grating (LPFG) structure

    Optical fiber sensors by direct laser processing: a review

    Get PDF
    The consolidation of laser micro/nano processing technologies has led to a continuous increase in the complexity of optical fiber sensors. This new avenue offers novel possibilities for advanced sensing in a wide set of application sectors and, especially in the industrial and medical fields. In this review, the most important transducing structures carried out by laser processing in optical fiber are shown. The work covers different types of fiber Bragg gratings with an emphasis in the direct-write technique and their most interesting inscription configurations. Along with gratings, cladding waveguide structures in optical fibers have reached notable importance in the development of new optical fiber transducers. That is why a detailed study is made of the different laser inscription configurations that can be adopted, as well as their current applications. Microcavities manufactured in optical fibers can be used as both optical transducer and hybrid structure to reach advanced soft-matter optical sensing approaches based on optofluidic concepts. These in-fiber cavities manufactured by femtosecond laser irradiation followed by chemical etching are promising tools for biophotonic devices. Finally, the enhanced Rayleigh backscattering fibers by femtosecond laser dots inscription are also discussed, as a consequence of the new sensing possibilities they enableThis research was funded by the Ministerio de Economía y Competitividad of Spain (TEC2016-76021-C2-2-R), the FEDER/Ministerio de Ciencia, Innovación y Universidades and Agencia Estatal de Investigación (PID2019- 107270RB-C21), and the Ministerio de Educación, Cultura y Deporte of Spain (PhD grant FPU2018/02797)

    Advanced FBG fabrication for challenging applications

    Get PDF
    This thesis describes work performed for both advancing the fabrication process of fibre Bragg gratings and for a potential application for gratings inscribed by a system employing the improved methods. The aim of the discussed research is to increase the potential for fabricated grating variations whilst maintaining a grating accurate to the initial design and compensating for errors in fabrication. In addition, simulations for a system for detecting nanoparticles is sought, making use of the improvements to the fabrication setup and highlighting an example of the improved fabrication system’s flexibility. As a part of the development of the fabrication system, an increase in the efficiency of grating fabrication is a desired result, primarily via the reduction of grating iterations required to produce a high quality grating. To perform this, automated control of an optical vector analyser was created, for use in a feedback process in which the grating is observed during inscription and compared to simulations for the detection of fabrication errors. This will not only increase the likeness of gratings to their design but will also assist in repeatability of inscription by the system. Other improvements to the fabrication system have also been progressed, such as the inclusion of an optional interferometer inscription head and the ability to fabricate gratings of up to one metre in length. These two discussed factors will increase the flexibility of grating designs that can be written, enabling a greater variety of grating-based research to be available from a single fabrication setup. Potential fabrication designs to demonstrate the capabilities of the system were investigated, leading to the development of a simulation for a nanoparticle detector. Observations of the transmission spectrum as nanoparticles pass through the beam path in an orthogonally aligned microchannel demonstrate alterations to the spectrum which may be used to identify the presence of nanoparticles and some select attributes. How the changes in the wavelength of a valley within the spectrum are affected by variations in parameters is overviewed as well as improvements to the simulations to further develop the accuracy to a physical detection system

    Laser-induced forward transfer (LIFT) of water soluble polyvinyl alcohol (PVA) polymers for use as support material for 3D-printed structures

    Get PDF
    The additive microfabrication method of laser-induced forward transfer (LIFT) permits the creation of functional microstructures with feature sizes down to below a micrometre [1]. Compared to other additive manufacturing techniques, LIFT can be used to deposit a broad range of materials in a contactless fashion. LIFT features the possibility of building out of plane features, but is currently limited to 2D or 2½D structures [2–4]. That is because printing of 3D structures requires sophisticated printing strategies, such as mechanical support structures and post-processing, as the material to be printed is in the liquid phase. Therefore, we propose the use of water-soluble materials as a support (and sacrificial) material, which can be easily removed after printing, by submerging the printed structure in water, without exposing the sample to more aggressive solvents or sintering treatments. Here, we present studies on LIFT printing of polyvinyl alcohol (PVA) polymer thin films via a picosecond pulsed laser source. Glass carriers are coated with a solution of PVA (donor) and brought into proximity to a receiver substrate (glass, silicon) once dried. Focussing of a laser pulse with a beam radius of 2 µm at the interface of carrier and donor leads to the ejection of a small volume of PVA that is being deposited on a receiver substrate. The effect of laser pulse fluence , donor film thickness and receiver material on the morphology (shape and size) of the deposits are studied. Adhesion of the deposits on the receiver is verified via deposition on various receiver materials and via a tape test. The solubility of PVA after laser irradiation is confirmed via dissolution in de-ionised water. In our study, the feasibility of the concept of printing PVA with the help of LIFT is demonstrated. The transfer process maintains the ability of water solubility of the deposits allowing the use as support material in LIFT printing of complex 3D structures. Future studies will investigate the compatibility (i.e. adhesion) of PVA with relevant donor materials, such as metals and functional polymers. References: [1] A. Piqué and P. Serra (2018) Laser Printing of Functional Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. [2] R. C. Y. Auyeung, H. Kim, A. J. Birnbaum, M. Zalalutdinov, S. A. Mathews, and A. Piqué (2009) Laser decal transfer of freestanding microcantilevers and microbridges, Appl. Phys. A, vol. 97, no. 3, pp. 513–519. [3] C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ‘t Veld, and D. Lohse (2015) Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer, Adv. Mater., vol. 27, no. 27, pp. 4087–4092. [4] J. Luo et al. (2017) Printing Functional 3D Microdevices by Laser-Induced Forward Transfer, Small, vol. 13, no. 9, p. 1602553
    corecore