9,411 research outputs found

    A Survey of Paraphrasing and Textual Entailment Methods

    Full text link
    Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads (and trusts) the first element of a pair would most likely infer that the other element is also true. Paraphrasing can be seen as bidirectional textual entailment and methods from the two areas are often similar. Both kinds of methods are useful, at least in principle, in a wide range of natural language processing applications, including question answering, summarization, text generation, and machine translation. We summarize key ideas from the two areas by considering in turn recognition, generation, and extraction methods, also pointing to prominent articles and resources.Comment: Technical Report, Natural Language Processing Group, Department of Informatics, Athens University of Economics and Business, Greece, 201

    DCA: Diversified Co-Attention towards Informative Live Video Commenting

    Full text link
    We focus on the task of Automatic Live Video Commenting (ALVC), which aims to generate real-time video comments with both video frames and other viewers' comments as inputs. A major challenge in this task is how to properly leverage the rich and diverse information carried by video and text. In this paper, we aim to collect diversified information from video and text for informative comment generation. To achieve this, we propose a Diversified Co-Attention (DCA) model for this task. Our model builds bidirectional interactions between video frames and surrounding comments from multiple perspectives via metric learning, to collect a diversified and informative context for comment generation. We also propose an effective parameter orthogonalization technique to avoid excessive overlap of information learned from different perspectives. Results show that our approach outperforms existing methods in the ALVC task, achieving new state-of-the-art results

    Exploring the State of the Art in Legal QA Systems

    Full text link
    Answering questions related to the legal domain is a complex task, primarily due to the intricate nature and diverse range of legal document systems. Providing an accurate answer to a legal query typically necessitates specialized knowledge in the relevant domain, which makes this task all the more challenging, even for human experts. QA (Question answering systems) are designed to generate answers to questions asked in human languages. They use natural language processing to understand questions and search through information to find relevant answers. QA has various practical applications, including customer service, education, research, and cross-lingual communication. However, they face challenges such as improving natural language understanding and handling complex and ambiguous questions. Answering questions related to the legal domain is a complex task, primarily due to the intricate nature and diverse range of legal document systems. Providing an accurate answer to a legal query typically necessitates specialized knowledge in the relevant domain, which makes this task all the more challenging, even for human experts. At this time, there is a lack of surveys that discuss legal question answering. To address this problem, we provide a comprehensive survey that reviews 14 benchmark datasets for question-answering in the legal field as well as presents a comprehensive review of the state-of-the-art Legal Question Answering deep learning models. We cover the different architectures and techniques used in these studies and the performance and limitations of these models. Moreover, we have established a public GitHub repository where we regularly upload the most recent articles, open data, and source code. The repository is available at: \url{https://github.com/abdoelsayed2016/Legal-Question-Answering-Review}

    Artificial Intelligence Chatbots: A Survey of Classical versus Deep Machine Learning Techniques

    Get PDF
    Artificial Intelligence (AI) enables machines to be intelligent, most importantly using Machine Learning (ML) in which machines are trained to be able to make better decisions and predictions. In particular, ML-based chatbot systems have been developed to simulate chats with people using Natural Language Processing (NLP) techniques. The adoption of chatbots has increased rapidly in many sectors, including, Education, Health Care, Cultural Heritage, Supporting Systems and Marketing, and Entertainment. Chatbots have the potential to improve human interaction with machines, and NLP helps them understand human language more clearly and thus create proper and intelligent responses. In addition to classical ML techniques, Deep Learning (DL) has attracted many researchers to develop chatbots using more sophisticated and accurate techniques. However, research has paid chatbots have widely been developed for English, there is relatively less research on Arabic, which is mainly due to its complexity and lack of proper corpora compared to English. Though there have been several survey studies that reviewed the state-of-the-art of chatbot systems, these studies (a) did not give a comprehensive overview of how different the techniques used for Arabic chatbots in comparison with English chatbots; and (b) paid little attention to the application of ANN for developing chatbots. Therefore, in this paper, we conduct a literature survey of chatbot studies to highlight differences between (1) classical and deep ML techniques for chatbots; and (2) techniques employed for Arabic chatbots versus those for other languages. To this end, we propose various comparison criteria of the techniques, extract data from collected studies accordingly, and provide insights on the progress of chatbot development for Arabic and what still needs to be done in the future
    • …
    corecore