2,863 research outputs found

    Simplifying Contract-Violating Traces

    Full text link
    Contract conformance is hard to determine statically, prior to the deployment of large pieces of software. A scalable alternative is to monitor for contract violations post-deployment: once a violation is detected, the trace characterising the offending execution is analysed to pinpoint the source of the offence. A major drawback with this technique is that, often, contract violations take time to surface, resulting in long traces that are hard to analyse. This paper proposes a methodology together with an accompanying tool for simplifying traces and assisting contract-violation debugging.Comment: In Proceedings FLACOS 2012, arXiv:1209.169

    Scalable Reliable SD Erlang Design

    Get PDF
    This technical report presents the design of Scalable Distributed (SD) Erlang: a set of language-level changes that aims to enable Distributed Erlang to scale for server applications on commodity hardware with at most 100,000 cores. We cover a number of aspects, specifically anticipated architecture, anticipated failures, scalable data structures, and scalable computation. Other two components that guided us in the design of SD Erlang are design principles and typical Erlang applications. The design principles summarise the type of modifications we aim to allow Erlang scalability. Erlang exemplars help us to identify the main Erlang scalability issues and hypothetically validate the SD Erlang design

    Performance Enhancements for Asynchronous Random Access Protocols over Satellite

    Get PDF
    In this paper, a novel enhancement of the well known ALOHA random access mechanism is presented which largely extends the achievable throughput compared to traditional ALOHA and provides significantly lower packet loss rates. The novel mechanism, called Contention Resolution - ALOHA (CRA), is based on transmitting multiple replicas of a packet in an unslotted ALOHA system and applying interference cancellation techniques. In this paper the methodology for this new random access technique is presented, also w.r.t. existing Interference Cancellation (IC) techniques. Moreover numerical results for performance comparison with state of the art random access mechanisms, such as Contention Resolution Diversity Slotted ALOHA (CRDSA) are provided. Finally the benefit of taking strong forward error correcting codes for the performance of CRA is shown

    A Configurable Transport Layer for CAF

    Full text link
    The message-driven nature of actors lays a foundation for developing scalable and distributed software. While the actor itself has been thoroughly modeled, the message passing layer lacks a common definition. Properties and guarantees of message exchange often shift with implementations and contexts. This adds complexity to the development process, limits portability, and removes transparency from distributed actor systems. In this work, we examine actor communication, focusing on the implementation and runtime costs of reliable and ordered delivery. Both guarantees are often based on TCP for remote messaging, which mixes network transport with the semantics of messaging. However, the choice of transport may follow different constraints and is often governed by deployment. As a first step towards re-architecting actor-to-actor communication, we decouple the messaging guarantees from the transport protocol. We validate our approach by redesigning the network stack of the C++ Actor Framework (CAF) so that it allows to combine an arbitrary transport protocol with additional functions for remote messaging. An evaluation quantifies the cost of composability and the impact of individual layers on the entire stack

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the rst six months. The project aim is to scale the Erlang's radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the e ectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    Parallel Discrete Event Simulation with Erlang

    Full text link
    Discrete Event Simulation (DES) is a widely used technique in which the state of the simulator is updated by events happening at discrete points in time (hence the name). DES is used to model and analyze many kinds of systems, including computer architectures, communication networks, street traffic, and others. Parallel and Distributed Simulation (PADS) aims at improving the efficiency of DES by partitioning the simulation model across multiple processing elements, in order to enabling larger and/or more detailed studies to be carried out. The interest on PADS is increasing since the widespread availability of multicore processors and affordable high performance computing clusters. However, designing parallel simulation models requires considerable expertise, the result being that PADS techniques are not as widespread as they could be. In this paper we describe ErlangTW, a parallel simulation middleware based on the Time Warp synchronization protocol. ErlangTW is entirely written in Erlang, a concurrent, functional programming language specifically targeted at building distributed systems. We argue that writing parallel simulation models in Erlang is considerably easier than using conventional programming languages. Moreover, ErlangTW allows simulation models to be executed either on single-core, multicore and distributed computing architectures. We describe the design and prototype implementation of ErlangTW, and report some preliminary performance results on multicore and distributed architectures using the well known PHOLD benchmark.Comment: Proceedings of ACM SIGPLAN Workshop on Functional High-Performance Computing (FHPC 2012) in conjunction with ICFP 2012. ISBN: 978-1-4503-1577-

    The Buffered \pi-Calculus: A Model for Concurrent Languages

    Full text link
    Message-passing based concurrent languages are widely used in developing large distributed and coordination systems. This paper presents the buffered π\pi-calculus --- a variant of the π\pi-calculus where channel names are classified into buffered and unbuffered: communication along buffered channels is asynchronous, and remains synchronous along unbuffered channels. We show that the buffered π\pi-calculus can be fully simulated in the polyadic π\pi-calculus with respect to strong bisimulation. In contrast to the π\pi-calculus which is hard to use in practice, the new language enables easy and clear modeling of practical concurrent languages. We encode two real-world concurrent languages in the buffered π\pi-calculus: the (core) Go language and the (Core) Erlang. Both encodings are fully abstract with respect to weak bisimulations

    Automating property-based testing of evolving web services

    Get PDF
    Web services are the most widely used service technology that drives the Service-Oriented Computing~(SOC) paradigm. As a result, effective testing of web services is getting increasingly important. In this paper, we present a framework and toolset for testing web services and for evolving test code in sync with the evolution of web services. Our approach to testing web services is based on the Erlang programming language and QuviQ QuickCheck, a property-based testing tool written in Erlang, and our support for test code evolution is added to Wrangler, the Erlang refactoring tool. The key components of our system include the automatic generation of initial test code, the inference of web service interface changes between versions, the provision of a number of domain specific refactorings and the automatic generation of refactoring scripts for evolving the test code. Our framework provides users with a powerful and expressive web service testing framework, while minimising users' effort in creating, maintaining and evolving the test model. The framework presented in this paper can be used by both web service providers and consumers, and can be used to test web services written in whatever language; the approach advocated here could also be adopted in other property-based testing frameworks and refactoring tools
    • …
    corecore