63,820 research outputs found

    Laruelle Qua Stiegler: On Non-Marxism and the Transindividual

    Get PDF
    Alexander R. Galloway and Jason R. LaRiviére’s article “Compression in Philosophy” seeks to pose François Laruelle’s engagement with metaphysics against Bernard Stiegler’s epistemological rendering of idealism. Identifying Laruelle as the theorist of genericity, through which mankind and the world are identified through an index of “opacity,” the authors argue that Laruelle does away with all deleterious philosophical “data.” Laruelle’s generic immanence is posed against Stiegler’s process of retention and discretization, as Galloway and LaRiviére argue that Stiegler’s philosophy seeks to reveal an enchanted natural world through the development of noesis. By further developing Laruelle and Stiegler’s Marxian projects, I seek to demonstrate the relation between Stiegler's artefaction and “compression” while, simultaneously, I also seek to create further bricolage between Laruelle and Stiegler. I also further elaborate on their distinct engagement(s) with Marx, offering the mold of synthesis as an alternative to compression when considering Stiegler’s work on transindividuation. In turn, this paper seeks to survey some of the contemporary theorists drawing from Stiegler (Yuk Hui, Al-exander Wilson and Daniel Ross) and Laruelle (Anne-Françoise Schmidt, Gilles Grelet, Ray Brassier, Katerina Kolozova, John Ó Maoilearca and Jonathan Fardy) to examine political discourse regarding the posthuman and non-human, with a particular interest in Kolozova’s unified theory of standard philosophy and Capital

    Mixing Strategies in Data Compression

    Full text link
    We propose geometric weighting as a novel method to combine multiple models in data compression. Our results reveal the rationale behind PAQ-weighting and generalize it to a non-binary alphabet. Based on a similar technique we present a new, generic linear mixture technique. All novel mixture techniques rely on given weight vectors. We consider the problem of finding optimal weights and show that the weight optimization leads to a strictly convex (and thus, good-natured) optimization problem. Finally, an experimental evaluation compares the two presented mixture techniques for a binary alphabet. The results indicate that geometric weighting is superior to linear weighting.Comment: Data Compression Conference (DCC) 201

    On the Potential of Generic Modeling for VANET Data Aggregation Protocols

    Get PDF
    In-network data aggregation is a promising communication mechanism to reduce bandwidth requirements of applications in vehicular ad-hoc networks (VANETs). Many aggregation schemes have been proposed, often with varying features. Most aggregation schemes are tailored to specific application scenarios and for specific aggregation operations. Comparative evaluation of different aggregation schemes is therefore difficult. An application centric view of aggregation does also not tap into the potential of cross application aggregation. Generic modeling may help to unlock this potential. We outline a generic modeling approach to enable improved comparability of aggregation schemes and facilitate joint optimization for different applications of aggregation schemes for VANETs. This work outlines the requirements and general concept of a generic modeling approach and identifies open challenges

    Emergence of macroscopic directed motion in populations of motile colloids

    Full text link
    From the formation of animal flocks to the emergence of coordinate motion in bacterial swarms, at all scales populations of motile organisms display coherent collective motion. This consistent behavior strongly contrasts with the difference in communication abilities between the individuals. Guided by this universal feature, physicists have proposed that solely alignment rules at the individual level could account for the emergence of unidirectional motion at the group level. This hypothesis has been supported by agent-based simulations. However, more complex collective behaviors have been systematically found in experiments including the formation of vortices, fluctuating swarms, clustering and swirling. All these model systems predominantly rely on actual collisions to display collective motion. As a result, the potential local alignment rules are entangled with more complex, often unknown, interactions. The large-scale behavior of the populations therefore depends on these uncontrolled microscopic couplings. Here, we demonstrate a new phase of active matter. We reveal that dilute populations of millions of colloidal rollers self-organize to achieve coherent motion along a unique direction, with very few density and velocity fluctuations. Identifying the microscopic interactions between the rollers allows a theoretical description of this polar-liquid state. Comparison of the theory with experiment suggests that hydrodynamic interactions promote the emergence of collective motion either in the form of a single macroscopic flock at low densities, or in that of a homogenous polar phase at higher densities. Furthermore, hydrodynamics protects the polar-liquid state from the giant density fluctuations. Our experiments demonstrate that genuine physical interactions at the individual level are sufficient to set homogeneous active populations into stable directed motion

    Optimising Spatial and Tonal Data for PDE-based Inpainting

    Full text link
    Some recent methods for lossy signal and image compression store only a few selected pixels and fill in the missing structures by inpainting with a partial differential equation (PDE). Suitable operators include the Laplacian, the biharmonic operator, and edge-enhancing anisotropic diffusion (EED). The quality of such approaches depends substantially on the selection of the data that is kept. Optimising this data in the domain and codomain gives rise to challenging mathematical problems that shall be addressed in our work. In the 1D case, we prove results that provide insights into the difficulty of this problem, and we give evidence that a splitting into spatial and tonal (i.e. function value) optimisation does hardly deteriorate the results. In the 2D setting, we present generic algorithms that achieve a high reconstruction quality even if the specified data is very sparse. To optimise the spatial data, we use a probabilistic sparsification, followed by a nonlocal pixel exchange that avoids getting trapped in bad local optima. After this spatial optimisation we perform a tonal optimisation that modifies the function values in order to reduce the global reconstruction error. For homogeneous diffusion inpainting, this comes down to a least squares problem for which we prove that it has a unique solution. We demonstrate that it can be found efficiently with a gradient descent approach that is accelerated with fast explicit diffusion (FED) cycles. Our framework allows to specify the desired density of the inpainting mask a priori. Moreover, is more generic than other data optimisation approaches for the sparse inpainting problem, since it can also be extended to nonlinear inpainting operators such as EED. This is exploited to achieve reconstructions with state-of-the-art quality. We also give an extensive literature survey on PDE-based image compression methods

    Adaptive text mining: Inferring structure from sequences

    Get PDF
    Text mining is about inferring structure from sequences representing natural language text, and may be defined as the process of analyzing text to extract information that is useful for particular purposes. Although hand-crafted heuristics are a common practical approach for extracting information from text, a general, and generalizable, approach requires adaptive techniques. This paper studies the way in which the adaptive techniques used in text compression can be applied to text mining. It develops several examples: extraction of hierarchical phrase structures from text, identification of keyphrases in documents, locating proper names and quantities of interest in a piece of text, text categorization, word segmentation, acronym extraction, and structure recognition. We conclude that compression forms a sound unifying principle that allows many text mining problems to be tacked adaptively
    corecore