864 research outputs found

    Towards Flexibility and Accuracy in Space DTN Communications

    Get PDF
    ABSTRACT Although Interplanetary Telecommunications rely on preconfigured contact schedules to make routing decisions, there is a lack of appropriate mechanisms to notify the network about contact plan changes. In order to fill this gap, we propose and evaluate a framework for disseminating information about queueing delays and link disruptions. In this context, we present such a mechanism, focusing not only on its functional properties, but rather on its impact objectives: to improve accuracy and routing performance. Supportively, we couple this mechanism with a DTN-compatible protocol, namely Contact Plan Update Protocol (CPUP), which implements our dissemination policy. Through simulation of space scenarios we show that accuracy can be significantly improved in all cases while routing performance can achieve a wide range, from minor through to significant gains, conditionally

    LunaNet: a Flexible and Extensible Lunar Exploration Communications and Navigation Infrastructure

    Get PDF
    NASA has set the ambitious goal of establishing a sustainable human presence on the Moon. Diverse commercial and international partners are engaged in this effort to catalyze scientific discovery, lunar resource utilization and economic development on both the Earth and at the Moon. Lunar development will serve as a critical proving ground for deeper exploration into the solar system. Space communications and navigation infrastructure will play an integral part in realizing this goal. This paper provides a high-level description of an extensible and scalable lunar communications and navigation architecture, known as LunaNet. LunaNet is a services network to enable lunar operations. Three LunaNet service types are defined: networking services, position, navigation and timing services, and science utilization services. The LunaNet architecture encompasses a wide variety of topology implementations, including surface and orbiting provider nodes. In this paper several systems engineering considerations within the service architecture are highlighted. Additionally, several alternative LunaNet instantiations are presented. Extensibility of the LunaNet architecture to the solar system internet is discussed

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    PaFiR : Particle Filter Routing – a predictive relaying scheme for UAV-assisted IoT communications in future innovated networks

    Get PDF
    Increasing urbanization, smart cities and other cutting-edge technologies offer the prospect of providing more functions to benefit citizens by relying on the substantial data processing and exchange capabilities now possible. This can generate significant unpredictable and unbalanced data loads for the bearing IoT network to support its application and service demands. We thus propose a wireless routing scheme designed to use the Particle Filter algorithm to empower portable smart devices with intelligent capacities for the radio communication system. This facilitates the offloading of traffic from traditional wireless networks and enables the IoT system to adopt unmanned aerial vehicles, thus also offering further innovation to flying network platforms. The proposed PaFiR routing protocol offers the network more scalability, tolerance and resilience, to achieve the goal of smart relaying. Simulation results that demonstrate the routing algorithm designed offers excellent performance when compared with existing wireless relaying schemes. It provides delivery ratios that are improved by up to 40% without unmanageable increases in latency or overheads

    Enabling Future Science and Human Exploration with NASA's Next Generation near Earth and Deep Space Communications and Navigation Architecture

    Get PDF
    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities to meet unique space environment requirements and to provide capabilities that are beyond the commercial marketplace. The progress of the communications industry, including the emerging global space internet segment and its planned constellations of 100's of satellites offer additional opportunities for new capability and mission concepts. The opportunities and challenges of a future space architecture require an optimal solution encompassing a global perspective. The concepts and technologies intentionally define an architecture that applies not only to NASA, but to other U.S. government agencies, international space and government agencies, and domestic and international industries to advance the openness, interoperability, and affordability of space communications. Cooperation among the worlds space agencies, their capabilities, standards, operations, and interoperability are key to advancing humankind's understand of the universe and extending human presence into the solar system

    Schedule‐Aware Bundle Routing: Analysis and enhancements

    Get PDF
    The Delay-/Disruption-Tolerant Networking (DTN) architecture was designed to cope with challenges such as long delays and intermittent connectivity. To exploit the a priori knowledge of contacts, typical of space networks, NASA-JPL designed and included in ION (its DTN protocol suite) the Contact Graph Routing (CGR) algorithm. This paper studies the latest version, recently standardized as Schedule-Aware Bundle Routing (SABR) within the Consultative Committee for Space Data Systems (CCSDS). The first part of the paper is devoted to the algorithm analysis, which distinguishes three logical phases to examine sequentially. Following this comprehensive study, three enhancements are proposed, which aim to improve SABR accuracy and resistance against possible loops. They are studied on a simple but challenging DTN topology, implemented on a virtual GNU/Linux testbed. Tests are performed by running the latest version of ION and an independent implementation of SABR developed by the authors, Unibo-CGR. The numerical results are then examined in detail to highlight both SABR mechanisms and the advantages offered by the proposed enhancements

    Avionics Architectures for Exploration: Building a Better Approach for (Human) Spaceflight Avionics

    Get PDF
    The field of Avionics is advancing far more rapidly in terrestrial applications than in space flight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. Results from the AAE project's FY13 efforts are discussed, along with the status of FY14 efforts and future plans

    A Source Routing Algorithm Based on CGR for DTN-Nanosatellite Networks

    Get PDF
    The number of nanosatellites orbiting around the Earth is increasing year after year. Nanosatellite constellations can be deployed to cover even larger areas. However, data exchange among nanosatellites is not trivial, especially due to the required hardware components related to the limited size and weight. Moreover, in some cases, contacts between nanosatellites and ground stations cannot always be guaranteed. The Delay and Disruption Tolerant Networking (DTN) paradigm allows storing data in nanosatellite and ground station buffers until the contact with the next hop is available. Routing in this kind of network is a crucial aspect. Delivery times are larger compared to a \u201cclassical\u201d network due to the time that data have to wait inside intermediate node buffers and to the limitation of available resources, especially on-board nanosatellites. The adoption of a smart routing strategy can contribute relieving this gap. In this paper, we propose S-CGR, a Source routing algorithm based on the Contact Graph Routing (CGR). It computes a routing path from source to destination nodes for each bundle, which is the data unit in DTN networks. S-CGR considers static and known a priori information about contacts (begin times, end times, and overall contact volumes) and dynamic information about nanosatellite buffer occupancies and available contact volumes. The complete source/destination paths are stored in the bundles. Intermediate nodes read the routin
    corecore