360 research outputs found

    Time Protection: the Missing OS Abstraction

    Get PDF
    Timing channels enable data leakage that threatens the security of computer systems, from cloud platforms to smartphones and browsers executing untrusted third-party code. Preventing unauthorised information flow is a core duty of the operating system, however, present OSes are unable to prevent timing channels. We argue that OSes must provide time protection in addition to the established memory protection. We examine the requirements of time protection, present a design and its implementation in the seL4 microkernel, and evaluate its efficacy as well as performance overhead on Arm and x86 processors

    Secure Virtualization of Latency-Constrained Systems

    Get PDF
    Virtualization is a mature technology in server and desktop environments where multiple systems are consolidate onto a single physical hardware platform, increasing the utilization of todays multi-core systems as well as saving resources such as energy, space and costs compared to multiple single systems. Looking at embedded environments reveals that many systems use multiple separate computing systems inside, including requirements for real-time and isolation properties. For example, modern high-comfort cars use up to a hundred embedded computing systems. Consolidating such diverse configurations promises to save resources such as energy and weight. In my work I propose a secure software architecture that allows consolidating multiple embedded software systems with timing constraints. The base of the architecture builds a microkernel-based operating system that supports a variety of different virtualization approaches through a generic interface, supporting hardware-assisted virtualization and paravirtualization as well as multiple architectures. Studying guest systems with latency constraints with regards to virtualization showed that standard techniques such as high-frequency time-slicing are not a viable approach. Generally, guest systems are a combination of best-effort and real-time work and thus form a mixed-criticality system. Further analysis showed that such systems need to export relevant internal scheduling information to the hypervisor to support multiple guests with latency constraints. I propose a mechanism to export those relevant events that is secure, flexible, has good performance and is easy to use. The thesis concludes with an evaluation covering the virtualization approach on the ARM and x86 architectures and two guest operating systems, Linux and FreeRTOS, as well as evaluating the export mechanism

    Towards a formally designed and verified embedded operating system: case study using the B method

    Get PDF
    The dramatic growth in practical applications for iris biometrics has been accompanied by relevant developments in the underlying algorithms and techniques. Along with the research focused on near-infrared images captured with subject cooperation, e orts are being made to minimize the trade-o between the quality of the captured data and the recognition accuracy on less constrained environments, where images are obtained at the visible wavelength, at increased distances, over simpli ed acquisition protocols and adverse lightning conditions. At a rst stage, interpolation e ects on normalization process are addressed, pointing the outcomes in the overall recognition error rates. Secondly, a couple of post-processing steps to the Daugman's approach are performed, attempting to increase its performance in the particular unconstrained environments this thesis assumes. Analysis on both frequency and spatial domains and nally pattern recognition methods are applied in such e orts. This thesis embodies the study on how subject recognition can be achieved, without his cooperation, making use of iris data captured at-a-distance, on-the-move and at visible wavelength conditions. Widely used methods designed for constrained scenarios are analyzed

    The flask security architecture: system support for diverse security policies

    Get PDF
    technical reportOperating systems must be flexible in their support for security policies, i.e., the operating system must provide sufficient mechanisms for supporting the wide variety of real-world security policies. Systems claiming to provide this support have failed to do so in two ways: they either fail to provide sufficient control over the propagation of access rights, or they fail to provide enforcement mechanisms to support fine-grained control and dynamic security policies. In this paper we present an operating systems security architecture that solves both of these problems. The first problem is solved by ensuring that the security policy (through a consistent replica) is consulted for every security decision. The second problem is solved through mechanisms that are directly integrated into the service-providing components of the system. The architecture is described through its prototype implementation in the Flask microkernel-based OS, and the policy flexibility of the prototype is evaluated. We present initial evidence that the architecture's performance impact is modest. Moreover, our architecture is applicable to many other types of operating systems and environments

    System Support for Distributed Energy Management in Modular Operating Systems

    Get PDF
    This thesis proposes a novel approach for managing energy in modular operating systems. Our approach enables energy awareness if the resource-management subsystem is distributed among multiple operating-system modules. There are four key achievements: a model for modularization-aware energy management; the support for exposed and distributed energy accounting and allocation; the use of different energy-management interaction protocols; and, finally, the support virtualization of energy effects

    DRAFT: work in progress - - - comments solicited evolving Mach 3.0 to use migrating threads

    Get PDF
    technical reportLike most operating systems, Mach 3.0 views threads as statically associated with a single task. An alternative model is that of migrating threads, in which a single thread abstraction moves between tasks with the logical flow of control, and "server" code is passively executed. We have compatibly replaced Mach's static threads with migrating threads, isolating that aspect of operating system design and implementation. The key element of our design is a decoupling of the thread abstraction into the controllable execution context and the schedulable thread of control, consisting of a chain of contexts. A key element of our implementation is that threads are now "based" in the kernel, and temporarily make excursions into tasks via upcalls. The new system provides cleaner and more powerful semantics for thread manipulation, allows scheduling and accounting attributes to follow threads, simplifies both kernel and server code, and improves RPC performance. We have retained the old thread and IPC interfaces for backwards compatibility, with no changes required to existing client programs and only a minimal change to servers, as demonstrated by a functional Unix single server and clients. Code size along the critical RPC path has been reduced by a factor of three, while its logical complexity has been reduced by an order of magnitude. Initial timings show that the performance of local RPC, doing normal marshaling, has also improved by a factor of three. We conclude that a migrating thread model is superior to a static model, and that it is feasible to improve existing operating systems in this manner

    Advancing Operating Systems via Aspect-Oriented Programming

    Get PDF
    Operating system kernels are among the most complex pieces of software in existence to- day. Maintaining the kernel code and developing new functionality is increasingly compli- cated, since the amount of required features has risen significantly, leading to side ef fects that can be introduced inadvertedly by changing a piece of code that belongs to a completely dif ferent context. Software developers try to modularize their code base into separate functional units. Some of the functionality or “concerns” required in a kernel, however, does not fit into the given modularization structure; this code may then be spread over the code base and its implementation tangled with code implementing dif ferent concerns. These so-called “crosscutting concerns” are especially dif ficult to handle since a change in a crosscutting concern implies that all relevant locations spread throughout the code base have to be modified. Aspect-Oriented Software Development (AOSD) is an approach to handle crosscutting concerns by factoring them out into separate modules. The “advice” code contained in these modules is woven into the original code base according to a pointcut description, a set of interaction points (joinpoints) with the code base. To be used in operating systems, AOSD requires tool support for the prevalent procedu- ral programming style as well as support for weaving aspects. Many interactions in kernel code are dynamic, so in order to implement non-static behavior and improve performance, a dynamic weaver that deploys and undeploys aspects at system runtime is required. This thesis presents an extension of the “C” programming language to support AOSD. Based on this, two dynamic weaving toolkits – TOSKANA and TOSKANA-VM – are presented to permit dynamic aspect weaving in the monolithic NetBSD kernel as well as in a virtual- machine and microkernel-based Linux kernel running on top of L4. Based on TOSKANA, applications for this dynamic aspect technology are discussed and evaluated. The thesis closes with a view on an aspect-oriented kernel structure that maintains coherency and handles crosscutting concerns using dynamic aspects while enhancing de- velopment methods through the use of domain-specific programming languages

    The OpenProcessor Platform. Fostering Research on the Hardware/Software Boundary

    Get PDF
    • …
    corecore