25,850 research outputs found

    Rewiring strategies for changing environments

    Get PDF
    A typical pervasive application executes in a changing environment: people, computing resources, software services and network connections come and go continuously. A robust pervasive application needs adapt to this changing context as long as there is an appropriate rewiring strategy that guarantees correct behavior. We combine the MERODE modeling methodology with the ReWiRe framework for creating interactive pervasive applications that can cope with changing environments. The core of our approach is a consistent environment model, which is essential to create (re)configurable context-aware pervasive applications. We aggregate different ontologies that provide the required semantics to describe almost any target environment. We present a case study that shows a interactive pervasive application for media access that incorporates parental control on media content and can migrate between devices. The application builds upon models of the run-time environment represented as system states for dedicated rewiring strategies

    Personalizing Situated Workflows for Pervasive Healthcare Applications

    Get PDF
    In this paper, we present an approach where a workflow system is combined with a policy-based framework for the specification and enforcement of policies for healthcare applications. In our approach, workflows are used to capture entitiespsila responsibilities and to assist entities in fulfilling them. The policy-based framework allows us to express authorisation policies to define the rights that entities have in the system, and event-condition-action (ECA) policies that are used to adapt the system to the actual situation. Authorisations will often depend on the context in which patientspsila care takes place, and our policies support predicates that reflect the environment. ECA policies capture events that reflect the current state of the environment and can perform actions to accordingly adapt the workflow execution. We show how the approach can be used for the Edema treatment and how fine-grained authorisation and ECA policies are expressed and used

    In Things We Trust? Towards trustability in the Internet of Things

    Full text link
    This essay discusses the main privacy, security and trustability issues with the Internet of Things

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    An eco-friendly hybrid urban computing network combining community-based wireless LAN access and wireless sensor networking

    Get PDF
    Computer-enhanced smart environments, distributed environmental monitoring, wireless communication, energy conservation and sustainable technologies, ubiquitous access to Internet-located data and services, user mobility and innovation as a tool for service differentiation are all significant contemporary research subjects and societal developments. This position paper presents the design of a hybrid municipal network infrastructure that, to a lesser or greater degree, incorporates aspects from each of these topics by integrating a community-based Wi-Fi access network with Wireless Sensor Network (WSN) functionality. The former component provides free wireless Internet connectivity by harvesting the Internet subscriptions of city inhabitants. To minimize session interruptions for mobile clients, this subsystem incorporates technology that achieves (near-)seamless handover between Wi-Fi access points. The WSN component on the other hand renders it feasible to sense physical properties and to realize the Internet of Things (IoT) paradigm. This in turn scaffolds the development of value-added end-user applications that are consumable through the community-powered access network. The WSN subsystem invests substantially in ecological considerations by means of a green distributed reasoning framework and sensor middleware that collaboratively aim to minimize the network's global energy consumption. Via the discussion of two illustrative applications that are currently being developed as part of a concrete smart city deployment, we offer a taste of the myriad of innovative digital services in an extensive spectrum of application domains that is unlocked by the proposed platform

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results

    Implementation of ontology for intelligent hospital ward

    Get PDF
    We have developed and implemented an ontology for an intelligent hospital ward. Our aim is to address the pervasiveness of computing applications in healthcare environments, which require: sharing of data across the hospital, including data generated by sensors and embedded in such environments, and dealing with semantic heterogeneity that exists across the hospital's data repositories. Our conceptual ontological model that supports such an environment has been implemented using semantic web tools and tested through the application developed with the J2EE technology
    corecore