247,732 research outputs found

    STATE-OF-THE-ART OF MESSAGING FOR DISTRIBUTED COMPUTING SYSTEMS

    Get PDF
    Modern software applications rarely live in isolation and nowadays it is common practice to rely on services or consume information provided by remote entities. In such a distributed architecture, integration is key. Messaging, for more than a decade, is the reference solution to tackle challenges of a distributed nature, such as network unreliability, strong-coupling of producers and consumers and the heterogeneity of applications. Thanks to a strong community and a common effort towards standards and consolidation, message brokers are today the transport layer building blocks in many projects and services, both within the physics community and outside. Moreover, in recent years, a new generation of messaging services has appeared, with a focus on low-latency and high-performance use cases, pushing the boundaries of messaging applications. This paper will present messaging solutions for distributed applications going through an overview of the main concepts, technologies and services

    Disease surveillance and patient care in remote regions: an exploratory study of collaboration among healthcare professionals in Amazonia

    Get PDF
    The development and deployment of information technology, particularly mobile tools, to support collaboration between different groups of healthcare professionals has been viewed as a promising way to improve disease surveillance and patient care in remote regions. The effects of global climate change combined with rapid changes to land cover and use in Amazonia are believed to be contributing to the spread of vector-borne emerging and neglected diseases. This makes empowering and providing support for local healthcare providers all the more important. We investigate the use of information technology in this context to support professionals whose activities range from diagnosing diseases and monitoring their spread to developing policies to deal with outbreaks. An analysis of stakeholders, their roles and requirements, is presented which encompasses results of fieldwork and of a process of design and prototyping complemented by questionnaires and targeted interviews. Findings are analysed with respect to the tasks of diagnosis, training of local healthcare professionals, and gathering, sharing and visualisation of data for purposes of epidemiological research and disease surveillance. Methodological issues regarding the elicitation of cooperation and collaboration requirements are discussed and implications are drawn with respect to the use of technology in tackling emerging and neglected diseases

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Experimental Study of Remote Job Submission and Execution on LRM through Grid Computing Mechanisms

    Full text link
    Remote job submission and execution is fundamental requirement of distributed computing done using Cluster computing. However, Cluster computing limits usage within a single organization. Grid computing environment can allow use of resources for remote job execution that are available in other organizations. This paper discusses concepts of batch-job execution using LRM and using Grid. The paper discusses two ways of preparing test Grid computing environment that we use for experimental testing of concepts. This paper presents experimental testing of remote job submission and execution mechanisms through LRM specific way and Grid computing ways. Moreover, the paper also discusses various problems faced while working with Grid computing environment and discusses their trouble-shootings. The understanding and experimental testing presented in this paper would become very useful to researchers who are new to the field of job management in Grid.Comment: Fourth International Conference on Advanced Computing & Communication Technologies (ACCT), 201

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio
    • 

    corecore