129 research outputs found

    P2P assisted streaming for low popularity VoD contents

    Get PDF
    The Video on Demand (VoD) service is becoming a dominant service in the telecommunication market due to the great convenience regarding the choice of content items and their independent viewing time. However, due to its high traffic demand nature, the VoD streaming systems are faced with the problem of huge amounts of traffic generated in the core of the network, especially for serving the requests for content items that are not in the top popularity range. Therefore, we propose a peer assisted VoD model that takes advantage of the clients unused uplink and storage capacity to serve requests for less popular items with the objective to keep the traffic on the periphery of the network, reduce the transport cost in the core of the network and make the system more scalable

    Storage optimization for a peer-to-peer video-on-demand network

    Full text link

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    Mathematical analysis of scheduling policies in peer-to-peer video streaming networks

    Get PDF
    Las redes de pares son comunidades virtuales autogestionadas, desarrolladas en la capa de aplicación sobre la infraestructura de Internet, donde los usuarios (denominados pares) comparten recursos (ancho de banda, memoria, procesamiento) para alcanzar un fin común. La distribución de video representa la aplicación más desafiante, dadas las limitaciones de ancho de banda. Existen básicamente tres servicios de video. El más simple es la descarga, donde un conjunto de servidores posee el contenido original, y los usuarios deben descargar completamente este contenido previo a su reproducción. Un segundo servicio se denomina video bajo demanda, donde los pares se unen a una red virtual siempre que inicien una solicitud de un contenido de video, e inician una descarga progresiva en línea. El último servicio es video en vivo, donde el contenido de video es generado, distribuido y visualizado simultáneamente. En esta tesis se estudian aspectos de diseño para la distribución de video en vivo y bajo demanda. Se presenta un análisis matemático de estabilidad y capacidad de arquitecturas de distribución bajo demanda híbridas, asistidas por pares. Los pares inician descargas concurrentes de múltiples contenidos, y se desconectan cuando lo desean. Se predice la evolución esperada del sistema asumiendo proceso Poisson de arribos y egresos exponenciales, mediante un modelo determinístico de fluidos. Un sub-modelo de descargas secuenciales (no simultáneas) es globalmente y estructuralmente estable, independientemente de los parámetros de la red. Mediante la Ley de Little se determina el tiempo medio de residencia de usuarios en un sistema bajo demanda secuencial estacionario. Se demuestra teóricamente que la filosofía híbrida de cooperación entre pares siempre desempeña mejor que la tecnología pura basada en cliente-servidor

    QoE management of HTTP adaptive streaming services

    Get PDF

    Proactive Mechanisms for Video-on-Demand Content Delivery

    Get PDF
    Video delivery over the Internet is the dominant source of network load all over the world. Especially VoD streaming services such as YouTube, Netflix, and Amazon Video have propelled the proliferation of VoD in many peoples' everyday life. VoD allows watching video from a large quantity of content at any time and on a multitude of devices, including smart TVs, laptops, and smartphones. Studies show that many people under the age of 32 grew up with VoD services and have never subscribed to a traditional cable TV service. This shift in video consumption behavior is continuing with an ever-growing number of users. satisfy this large demand, VoD service providers usually rely on CDN, which make VoD streaming scalable by operating a geographically distributed network of several hundreds of thousands of servers. Thereby, they deliver content from locations close to the users, which keeps traffic local and enables a fast playback start. CDN experience heavy utilization during the day and are usually reactive to the user demand, which is not optimal as it leads to expensive over-provisioning, to cope with traffic peaks, and overreacting content eviction that decreases the CDN's performance. However, to sustain future VoD streaming projections with hundreds of millions of users, new approaches are required to increase the content delivery efficiency. To this end, this thesis identifies three key research areas that have the potential to address the future demand for VoD content. Our first contribution is the design of vFetch, a privacy-preserving prefetching mechanism for mobile devices. It focuses explicitly on OTT VoD providers such as YouTube. vFetch learns the user interest towards different content channels and uses these insights to prefetch content on a user terminal. To do so, it continually monitors the user behavior and the device's mobile connectivity pattern, to allow for resource-efficient download scheduling. Thereby, vFetch illustrates how personalized prefetching can reduce the mobile data volume and alleviate mobile networks by offloading peak-hour traffic. Our second contribution focuses on proactive in-network caching. To this end, we present the design of the ProCache mechanism that divides the available cache storage concerning separate content categories. Thus, the available storage is allocated to these divisions based on their contribution to the overall cache efficiency. We propose a general work-flow that emphasizes multiple categories of a mixed content workload in addition to a work-flow tailored for music video content, the dominant traffic source on YouTube. Thereby, ProCache shows how content-awareness can contribute to efficient in-network caching. Our third contribution targets the application of multicast for VoD scenarios. Many users request popular VoD content with only small differences in their playback start time which offers a potential for multicast. Therefore, we present the design of the VoDCast mechanism that leverages this potential to multicast parts of popular VoD content. Thereby, VoDCast illustrates how ISP can collaborate with CDN to coordinate on content that should be delivered by ISP-internal multicast

    Progressive introduction of network softwarization in operational telecom networks: advances at architectural, service and transport levels

    Get PDF
    Technological paradigms such as Software Defined Networking, Network Function Virtualization and Network Slicing are altogether offering new ways of providing services. This process is widely known as Network Softwarization, where traditional operational networks adopt capabilities and mechanisms inherit form the computing world, such as programmability, virtualization and multi-tenancy. This adoption brings a number of challenges, both from the technological and operational perspectives. On the other hand, they provide an unprecedented flexibility opening opportunities to developing new services and new ways of exploiting and consuming telecom networks. This Thesis first overviews the implications of the progressive introduction of network softwarization in operational networks for later on detail some advances at different levels, namely architectural, service and transport levels. It is done through specific exemplary use cases and evolution scenarios, with the goal of illustrating both new possibilities and existing gaps for the ongoing transition towards an advanced future mode of operation. This is performed from the perspective of a telecom operator, paying special attention on how to integrate all these paradigms into operational networks for assisting on their evolution targeting new, more sophisticated service demands.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Eduardo Juan Jacob Taquet.- Secretario: Francisco Valera Pintor.- Vocal: Jorge López Vizcaín
    corecore